

Prospects for a Linac-Based Carbon Ion Therapy Facility in the Chicago Area

Brahim Mustapha Physics Division Argonne National Laboratory

Contributors: A. Nassiri, J.A. Nolen, and J. Noonan (ANL) B. Aydogan, K. Yenice and C. Pelizzari (U-Chicago)

> ANS AccApp'17 Topical Meeting Jul 31st-Aug 4th, 2017, Quebec City, Canada

Outline

□ Why Hadron/Carbon Therapy?

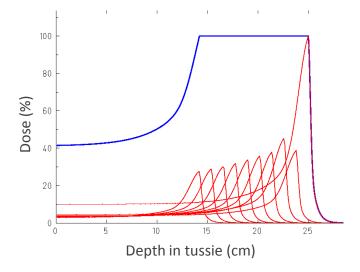
□ Why Linac-Based Hadron Therapy?

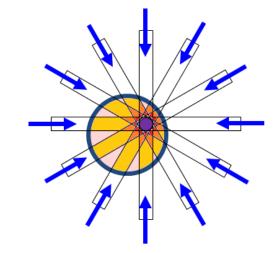
□ ACCIL: The Advanced Compact Carbon Ion Linac

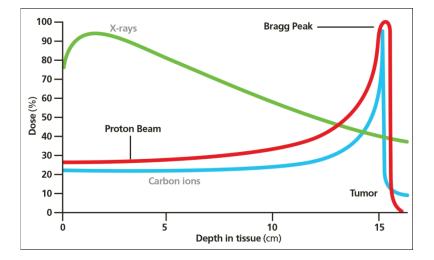
□ A Compact SC Gantry Concept: Option for Beam Delivery

□ Possibilities with ACCIL ...

Potential for ACCIL-Based CIT in the Chicago Area



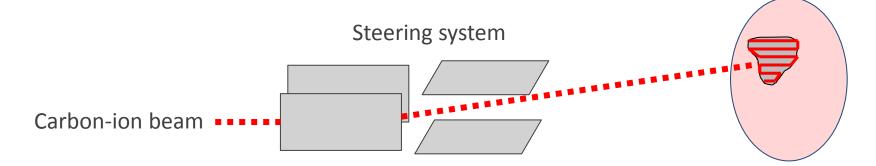

B. Mustapha


Prospects - Linac-Based CIT @ Chicago

Why Hadron / Carbon Therapy?

✓ Ions allow depth (energy) scanning and multi-directional irradiation

 □ Carbon-ions have a sharper Bragg peak → More precise treatment
□ Carbon-ions have larger RBE → Capable of treating more "radio-resistant" tumors
□ For ~ 30 cm range in human body, 230 MeV for protons or 430 MeV/u for carbon-ions


AccApp'17, Jul 31st -Aug 4th, 2017, Quebec City, Canada

3

Why Linac-Based Hadron Therapy?

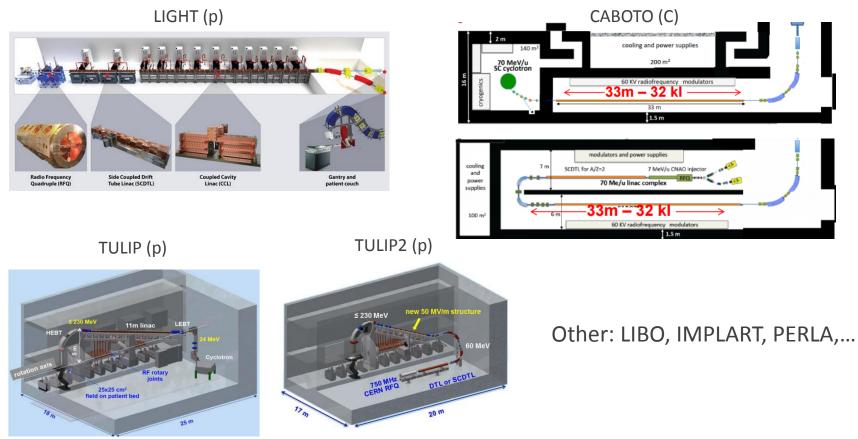
	Cyclotron	Synchrotron	Linac
Variable energy	With degrader	From pulse to pulse without losses	From pulse to pulse without losses
Beam quality	Bad quality due to beam energy degrader	Good	Good
Repetition rate	CW	~ 1 Hz	~ 300 Hz

 \checkmark 3D Spot scanning and multi-painting techniques \rightarrow Linac is Best Solution

Repetition rate: sub-µsec pulses @ 100-400 Hz

Beam intensity: up to 10¹⁰ particles/sec

Beam energy: continuously variable from pulse to pulse, up to 450 MeV/u for carbon


B. Mustapha

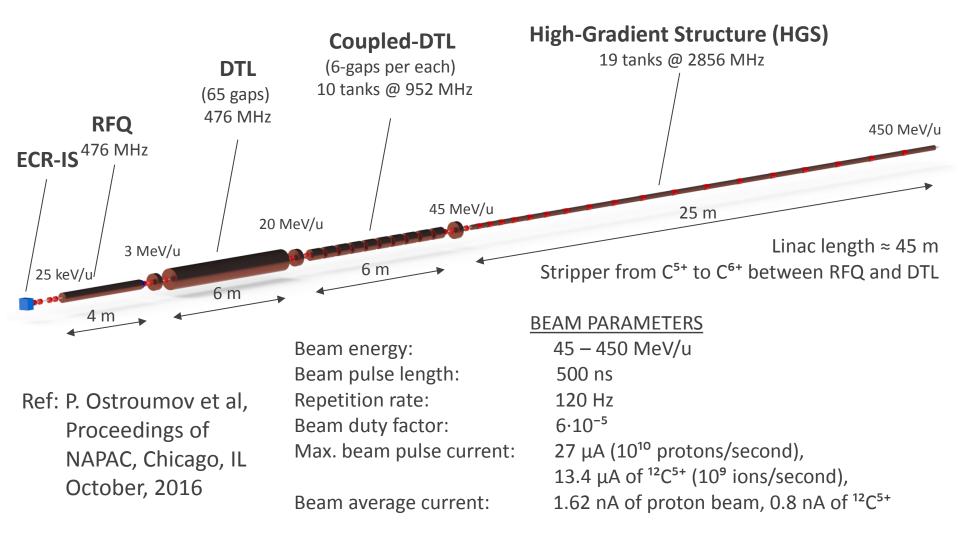
Prospects - Linac-Based CIT @ Chicago

AccApp'17, Jul 31st -Aug 4th, 2017, Quebec City, Canada

Linacs for Hadron Therapy (Proposed, None exist ...)

First proposal for a hadron therapy linac: R. W. Hamm, K. R. Crandall, and J. M. Potter, "Preliminary Design of a Dedicated Proton Therapy Linac", Proceedings of PAC-91 conference, p.2583-2585

Main parts of these accelerators operate at 3 GHz (S-band)


✓ Why None Exist? \rightarrow Needs to be Compact & Cost-Effective

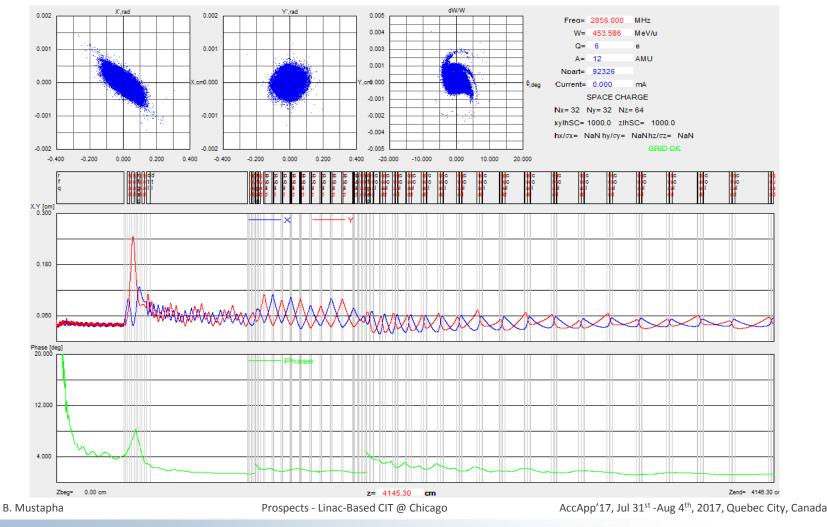
B. Mustapha

Prospects - Linac-Based CIT @ Chicago

AccApp'17, Jul 31st - Aug 4th, 2017, Quebec City, Canada

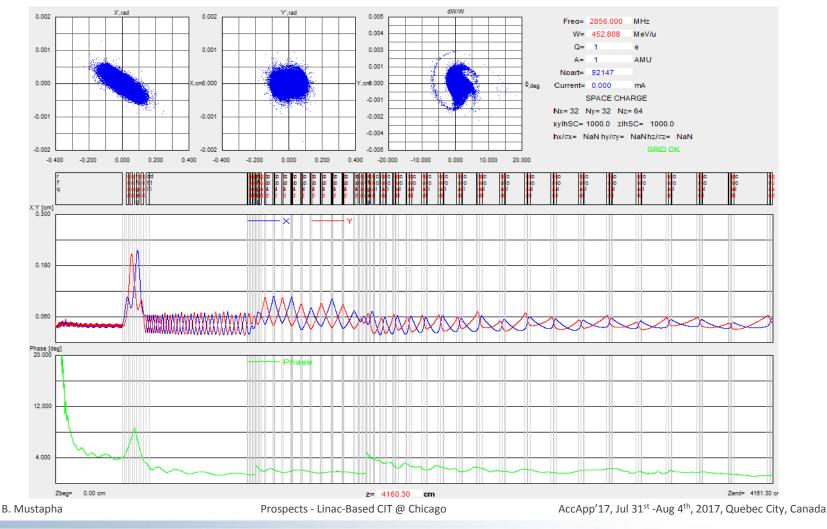
ACCIL: The Advanced Compact Carbon Ion Linac

✓ Key Component: High-Gradient Accelerating Structures → Compactness

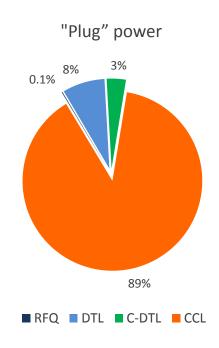

B. Mustapha

Prospects - Linac-Based CIT @ Chicago

AccApp'17, Jul 31st -Aug 4th, 2017, Quebec City, Canada


ACCIL End-to-End Beam Dynamics for Carbon Ions

- ✓ RFQ to Linac exit ~ 40 m long
- ✓ 450 MeV/u output energy
- ✓ Over 90% transmission from the source including stripping


ACCIL End-to-End Beam Dynamics for Protons

- ✓ DTL with permanent magnets designed to allow both proton and carbon beams
- ✓ 250 MeV protons for therapy 450 MeV available for proton tomography
- ✓ Good beam dynamics, beam quality and transmission similar to carbon

ACCIL Power Consumption @ 120 Hz

	RFQ 476 MHz	DTL 476 MHz	C-DTL 952 MHz	HGS 2856 MHz
Pulsed RF power	0.44 MW	4.88 MW	6.10 MW	1065 MW
Average RF power	0.54 kW	31 kW	14 kW	360 kW
RF source efficiency	40 %	40 %	40 %	40 %
"Plug" power	1.34 kW	77 kW	35 kW	900 kW

Total "plug power": 1,013 kW ~ 1 MW

Prospects - Linac-Based CIT @ Chicago

AccApp'17, Jul 31st -Aug 4th, 2017, Quebec City, Canada

Comparison to A Recently Built Synchrotron

MedAustron

Synchrotron Vienna, Austria (Started operation in 2015)

ACCIL

(Courtesy, A. Plastun)

Accelerator cost (only) \approx \$70-80M < \$50M

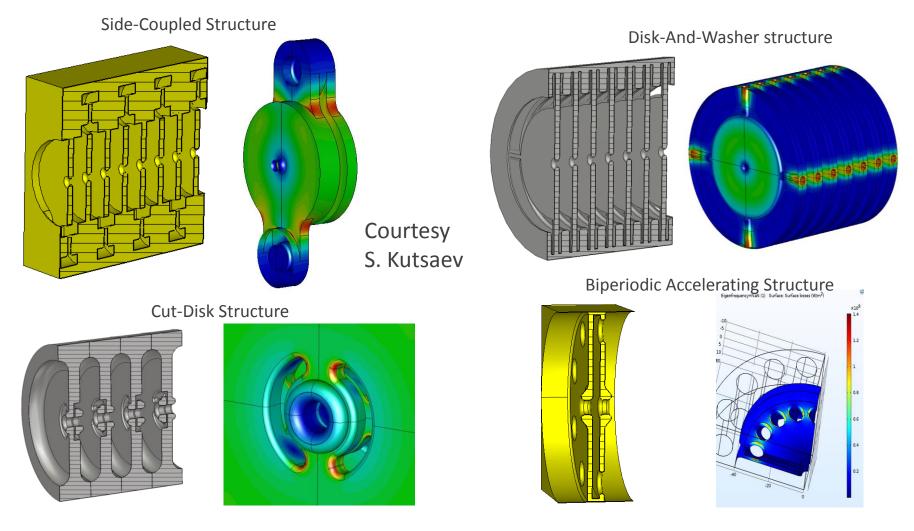
Power consumption*

5 MW

1 MW

Footprint 25x25 m² 8x45 m²

✓ ACCIL offers Compactness, Lower Construction & Operation Costs

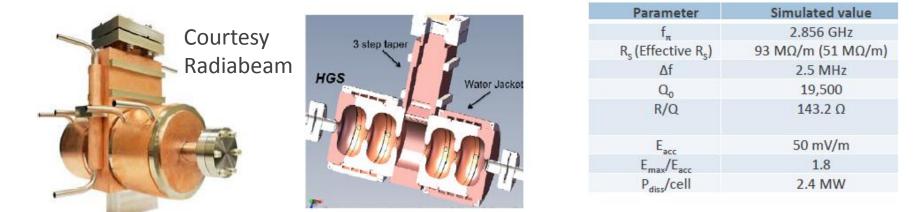

B. Mustapha

Prospects - Linac-Based CIT @ Chicago

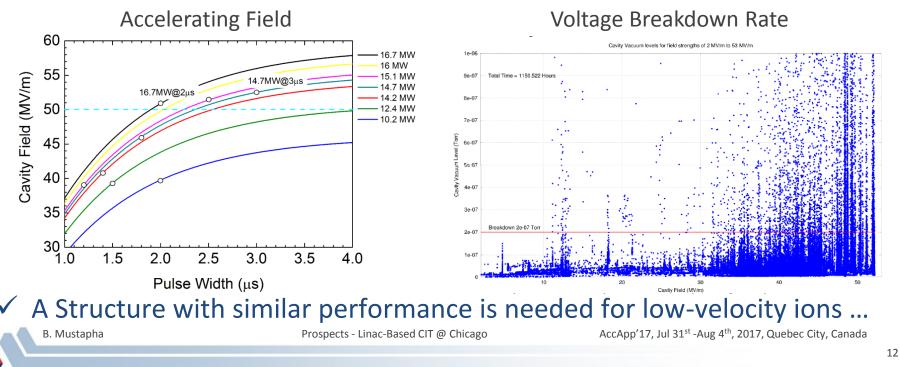
AccApp'17, Jul 31st -Aug 4th, 2017, Quebec City, Canada

Requirements & High-Gradient Structure Candidates

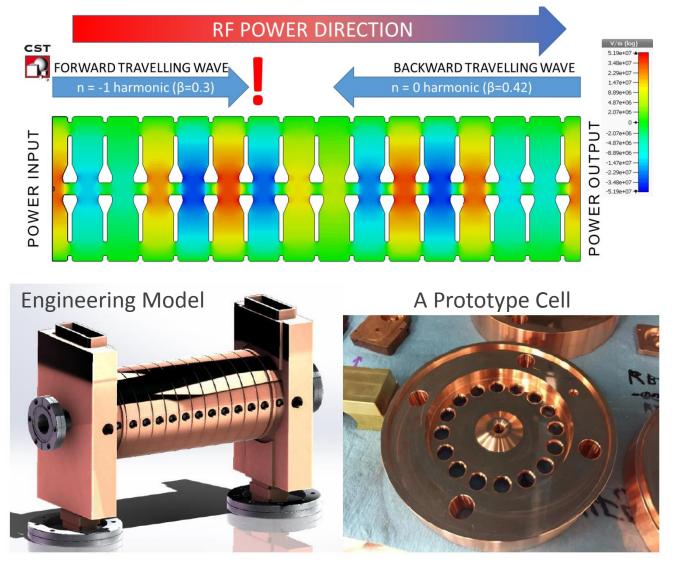
Need 50 MV/m Voltage Gradient


The choice of structure will be based on thermal and mechanical design

B. Mustapha


Prospects - Linac-Based CIT @ Chicago

AccApp'17, Jul 31st -Aug 4th, 2017, Quebec City, Canada


A HGS for Electrons: Built by RadiaBeam, Tested at ANL

High-Power Test Results at Argonne RF Test Facility (APS)

Negative Harmonic (B~0.3) Traveling Wave Structure, being developed by RadiaBeam & Argonne (SBIR)

Prospects - Linac-Based CIT @ Chicago

AccApp'17, Jul 31st - Aug 4th, 2017, Quebec City, Canada

Courtesy Radiabeam

A Compact SC Gantry Concept: Option for Beam Delivery

Layout & Beam Optics Design

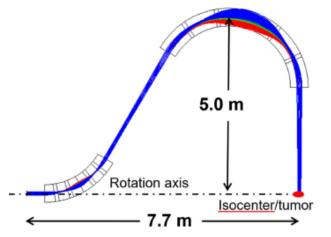
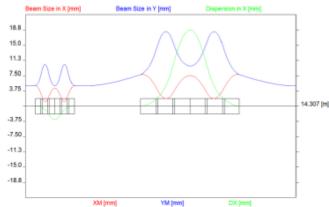
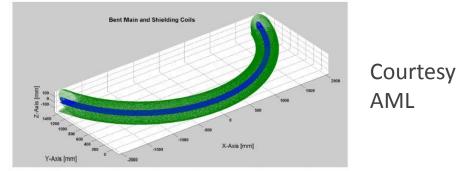
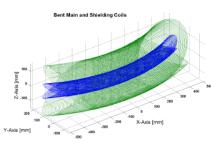
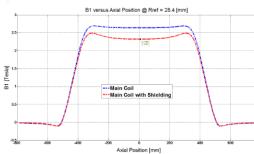


Fig. 1: Layout of carbon isocentric gantry system


Fig. 2: Beam size and dispersion function with initial \pm 5 mm beam size, 10 π mm.mrad emittance and \pm 2% kinetic energy spread

Magnet Technology: Wire & Coil


Multi-Filament Round YBCO Wire				
Parameter	Unit	Quantity		
Wire Diameter	mm	1.3 - 1.6		
Ic @ 77 K	Α	300		
Ic @ 3.5 Tesla, 16-20 K	Α	900		
Isotropic in Respect to Field Direction	N/A	N/A		
Fully Reacted Conductor	N/A	N/A		
Minimum Bending Radius	mm	15		

Actively shielded 150° dipole coils with 2-m bending radius for carbon gantry. For clarity only 2 winding layers are shown for the Main coil (blue) and for Shielding coil (green).

Actively shielded 60° dipole coils with 1-m bending radius for proton therapy gantry.

Dipole field as a function of axial position. The presence of the outer Shielding coil reduces the field in the beam aperture by about 15 %.

AccApp'17, Jul 31st -Aug 4th, 2017, Quebec City, Canada

B. Mustapha

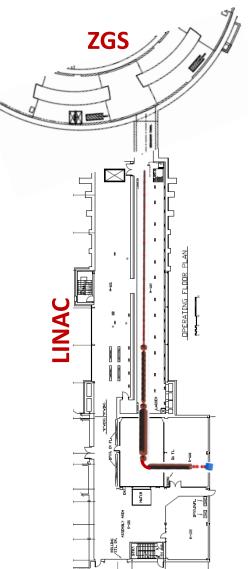
Prospects - Linac-Based CIT @ Chicago

Possibilities with ACCIL: Flexibility in Beam Tuning

- Capable of accelerating a variety of ion species up to Neon, up to an energy of 450 MeV per nucleon
- Pulse-to-pulse energy modulation with a repetition rate up to 300 Hz
- Intensity modulation is possible by changing the pulse repetition rate
- Fast ion beam switching possible from different ion sources in the front-end
- In principle, fast and effective multi-ion multi-energy multi-intensity ion beam therapy is possible with ACCIL

B. Mustapha

Possibilities with ACCIL: Applications


- ACCIL was designed for carbon ions, but capable of accelerating ions with similar or lower mass-to-charge ratios to the same energy
- lons lighter than Carbon (Hydrogen, Helium, ...) have ranges exceeding the human body and could be used for treatment or imaging
- Ions heavier than Carbon (Oxygen, Neon,...) could be used for treatment even though their range will be shorter
- Carbon can be used to produce C-11, which is a positron emitter and could be used for treatment and imaging simultaneously
- An ACCIL-based facility will allow comparative studies with different ion species up to Neon.
- Adding a compact SC gantry should allow the development of 3D scanning and multi-painting techniques for these ions

B. Mustapha

Prospects - Linac-Based CIT @ Chicago

Possible Location of ACCIL-Based Facility at Argonne

- The old IPNS site is a prime development location for ACCIL
- The old Linac building exist and could fit the 50 m ACCIL linac
- The building has the required infrastructure: Water, Power & Cranes ...
- Using the Linac building and part of ZGS for treating rooms is a significant saving
- After development, the facility could be moved elsewhere ...

B. Mustapha

Prospects - Linac-Based CIT @ Chicago

Summary

- Hadron and Ion Cancer Therapy is promising
- A Linac-based facility offers more flexibility than existing cyclotrons and synchrotrons with lower construction and operating costs
- The ACCIL design for a Carbon Ion Linac was developed at Argonne
- The required high-gradient accelerating structures are being developed by RadiaBeam and Argonne
- A concept for a compact SC gantry exist
- An estimated cost for an ACCIL-based facility at the old IPNS site is ~ 100 M\$, much less than the 200-300 M\$ for other CIT centers