

The ATLAS Multi-User Upgrade & Potential Applications

Brahim Mustapha Physics Division Argonne National Laboratory

Contributors: J.A. Nolen, G. Savard and P.N. Ostroumov

ANS AccApp'17 Topical Meeting Jul 31st-Aug 4th, 2017, Quebec City, Canada

Outline

A Brief Introduction to the ATLAS Linac at Argonne

Recent Upgrades to the ATLAS facility

Increased Beam Demand & The Need for Multi-User Capabilities

Simultaneous Two-Beam Acceleration with Pulsed CARIBU-EBIS

□ The ATLAS Multi-User Upgrade

Scope & Proposed Implementation

Beam Optics & Technical Solution

Potential Applications

- □ Material Irradiation with Heavy Ions at ~1 MeV/u
- □ Isotope Production with Light Ions at ~ 7 MeV/u

B. Mustapha

ATLAS: Argonne Tandem Linac Accelerator System

Recent Upgrades (2014): Efficiency & Intensity Upgrade

New CW 60 MHz RFQ

- ✓ Split-coaxial with trapezoidal modulations
- ✓ Output matcher for axis symmetric beam
- ✓ In routine operation since early 2013

New SC Module

- ✓ 7 β ~ 0.77 QWR and 4 solenoids
- ✓ Capable of delivering 17.5 MV
- ✓ Replaced 3 old SC modules
- ✓ In routine operation since early 2014

✓ New RFQ: Transmission increased from 50% to 80% → Efficiency & Reliability
✓ New SC Module: Acceleration of 10x more intense beams → Intensity

B. Mustapha

ATLAS-MUU & Potential Applications

AccApp'17, Jul 31st -Aug 4th, 2017, Quebec City, Canada

Recent Upgrades (2016): CARIBU - EBIS

CARIBU : CAlifornium Rare Isotope Breeder Upgrade

- Radioactive beams from a Californium Source
- \checkmark The ions are collected, separated and cooled to form a beam
- \checkmark An ECR charge breeder was originally used for breeding and injection to ATLAS
- ✓ An EBIS charge breeder was developed for higher efficiency and better purity
- $\checkmark~$ The EBIS was successfully installed and commissioned in 2016

B. Mustapha

ATLAS-MUU & Potential Applications

AccApp'17, Jul 31st -Aug 4th, 2017, Quebec City, Canada

EBIS Source Installation & Performance

- ✓ The CARIBU-EBIS has replaced the original ECR breeder
- \checkmark It enhanced both the intensity and purity of CARIBU radioactive beams
- Successfully commissioned online: Cs transmission efficiency > 70 % with single charge state breeding efficiency > 20%
- $\checkmark~$ It is now being routinely used to breed CARIBU beams for injection to ATLAS

Increased Beam Demand and The Need for Multi-User Capabilities at ATLAS

- ✓ In the past few years, the requested experimental beam time significantly exceeded the 5500 hours that ATLAS deliver yearly.
- ✓ With CARIBU online and the closing of other user facilities, the demand for beam time is more than doubling ...
- Low intensity beams (CARIBU & In-flight) and the search for low cross section channels (FMA & AGFA) will require longer experimental run periods, putting more pressure on available beam time.
- There is an immediate need for multi-user capabilities
- Analysis of recent ATLAS operations with accelerated CARIBU beams shows that a multi-user upgrade could deliver ~ 50% more beam time for the nuclear physics experimental program and potentially up to 100% if other applications were added.

The Possibility with Pulsed Beams from CARIBU-EBIS

- ✓ EBIS beam is ~ 10 µs to ~1 ms pulse up to 30 Hz repetition rate \rightarrow < 3 % DF
- ✓ DC beam from ECR could be injected into ATLAS in the remaining 97% DF
- ✓ CARIBU beam masses range from 80 to 170 with Z ranging from 30 to 70
- \checkmark The highest charge-to-mass ratio they could be ionized to is 1/4.
- ✓ ATLAS accelerates any beam with a charge-to-mass ratio \ge 1/7
- \checkmark The useful charge-to-mass ratio range for the multi-user capability is 1/7 to 1/4
- $\checkmark~$ Higher q/A \approx 1/3 can be achieved if EBIS is operated at 10 Hz

Sample of Possible Simultaneous Stable and RIBs

A/Q	ATLAS stable beams	CARIBU beams
4.000	²⁰ Ne ^{5+, 28} Si ^{7+, 36} Ar ⁹⁺	⁸⁴ Se ^{21+, 88} Kr ^{22+, 92} Sr ^{23+, 101} Mo ^{25+, 105} Ru ²⁰⁺
4.143	58 14+ Ni	As , Y , Tc , Pd , Cd 88 21+ 91 22+ 101 24+ 105 25+ 117 28+
4.167	50 12+ Ti	Br, Rb, Zr, Ru, Cd
4.200	Cu	89 21+ 97 23+ 105 25+ 109 26+ 113 27+ Rb , Sr , Mo , Rh , Ag 89 21+ 97 23+ 102 24+ 111 26+ 119 28+
4.238	89 21+ Y	Kr, Sr, Zr, Rh, Cd
4.308	Fe So Ist	Kr, Sr, Rh, Sn, Ce
4.364	48 11+ 74 17+ Ti , Ge	92 21+ 105 24+ 109 25+ 119 27+ 149 34+ Kr , Nb , Tc , Pd , Nd
4.375	35 8+ C1	Y, Tc, Sn, I, Gd 89 20+ 112 25+ 139 31+ 157 35+ 156 35+
4.444	40 9+ 102 23+ 120 27+ Ca, Ru, Sn	Br, Rh, Xe, Sm, Eu
4.471	76 17+ Ge	90 20+ 99 22+ 135 30+ 128 31+ 161 36+ Br , Sr , Te , Cs , Gd 91 20+ 105 23+ 123 27+ 131 29+ 146 32+
4.538	59 13+ Co	Rb, Zr, Cd, Te, Pr
4.875	⁷⁸ K1 ¹⁶⁺	⁹³ Y ^{19+, 102} Mo ^{21+, 132} Sn ^{27+, 141} I ^{29+, 162} Eu ³⁴⁺
4.900	98 20+ Mo	98 20+ 108 22+ 117 24+ 136 28+ 161 33+ Sr , Mo , Pd , Sb , Sm

...

5.714	80 14+ Se	91 10+ 97 17+ 109 19+ 131 23+ 143 25+ Kr, Zr, Ru, Sb, Ba
6.432	238U37+	⁸³ Se ^{13+, 90} Kr ^{14+, 97} Sr ^{15+, 103} Zr ^{16+, 141} I ²²⁺
6.615	86 13+ Kr	se , Rb , Sr , Zr , Nb
6.667	180 2/+ Hf	Br, Kr, Sr, Y, Nb
6.709	208 31+ Pb	88 13+ 88 13+ 94 14+ 100 15+ 107 16+ Se, Br, Rb, Y, Nb
6.742	209 31+ Bi	87 13+ 87 13+ 95 14+ 102 15+ 108 16+ Se, Br, Rb, Y, Nb
6.793	197 294 Au	Se, Br, Rb, Y, Nb
7.000	Cs	⁸⁴ 12+ 98 14+ As , Rb ,

ATLAS-MUU & Potential Applications

AccApp'17, Jul 31st -Aug 4th, 2017, Quebec City, Canada

Potential Scope of ATLAS Multi-User Capabilities

Proposed Implementation of the ATLAS-MUU

- □ Two Beam Injection in the LEBT
- One Beam Extraction at PII or Booster

Modified Injection for ATLAS-MUU

✓ Modifications to the Front End

B. Mustapha

ATLAS-MUU & Potential Applications

AccApp'17, Jul 31st - Aug 4th, 2017, Quebec City, Canada

Example of Combining two beams in the LEBT

2 electrostatic sextupoles are needed to maximize the two beam overlap and \checkmark provide high transmission through ATLAS

B. Mustapha

AccApp'17, Jul 31st -Aug 4th, 2017, Quebec City, Canada

Adding a Beam Switchyard after Booster

Requirements

- Capable of switching in pulsed mode to send radioactive or stable beams to either Area II or Area III/IV
- Fits into the available space (significant constraint)
- Should accommodate the existing re-buncher cavity in the center of the beam transport line
- Should accommodate existing beam diagnostics
- Compatible with potential future upgrades

Booster Switchyard: Layout of Pulsed Chicane

Booster Switchyard: Beam Optics

Beam to **ATLAS** through the original beam line, a compact triplet is inserted right after Booster

Beam to **Area II** through a new chicane made of a kicker, a septum and 3 regular magnets

Key Components for the ATLAS MUU

LEBT Injection

- Conventional 75° bending magnet
- 2-3 electrostatic triplets
- Pulsed electrostatic deflector to merge stable and radioactive ion beams
- 2 electrostatic sextupoles

- Booster Switchyard
- Compact triplet
- Pulsed kicker-magnet, 5°
- Septum-magnet, 10°
- Three Conventional 15° bending magnets
- Possibly modified beam instrumentation

Potential Applications

Material Irradiation at ~ 1 MeV/u
Isotope Production at ~ 7 MeV/u

Material Irradiation after PII at ~ 1 MeV/u

A new beam extraction at ~ 1 MeV/u

Radiation damage mechanisms in Materials

point defects defect clusters bubbles voids precipitates solute segregation grain boundaries helium cavities amorphisation

- Use heavy-ion beams at ~ 1 MeV/u for irradiation of samples.
- Deliver mixed beams with the same mass-to-charge ratios (e.g. ⁸⁶Sr¹⁵⁺ and ¹³²Xe²³⁺) to model simultaneous damage from fission fragments.
- Provide ~ 10 µm beam penetration to avoid surface effects.
- Provide high damage dose rates (~25 dpa/hour) that will allow rapid material screening. Irradiation times from years to days and hours.
- Separate nuclear scattering damage and interstitial effects; ion energy deposition and implantation peak at different depths in the sample

B. Mustapha

AccApp'17, Jul 31st - Aug 4th, 2017, Quebec City, Canada

eXtreme MATerial Proposal at ANL - XMAT

In-situ Imaging of Radiation Damage

Heavy-Ion Linac at the APS at ANL

Ref: "Heavy Ion Linear Accelerator for Radiation Damage Studies of Materials" S. Kutsaev et al, Review of Scientific Instruments, 88, 033302 (2017)

Isotope Production & Other Application at ~ 7 MeV/u

Preliminary

- ✓ 6-7 MeV/u alpha and lithium beams for isotope production R&D
- ✓ Radiobiology effects can be studied with p, 4He, 6Li, and 12C beams at the Bragg peaks
- Radiation damage of materials can be studied with CARIBU beams such analogs of fission fragments in reactors such as Kr and Xe.

Summary

- We have developed a design concept and a technical solution for the ATLAS Multi-User Upgrade
- Feasibility of the most critical components has been proven
- If implemented successfully the ATLAS Multi-User Upgrade will enhance the experimental nuclear physics program by about 50%
- This upgrade will also make applications such as material irradiation and isotope production possible
- Following the successful implementation of the proposed upgrade and the gained experience from multi-beam operations at ATLAS, more possibilities can be added to enhance the program

