Detection efficiency of the ESS Target Imaging System: Monte Carlo simulations

Nicolò Borghi
Esben Klinkby, Bent Lauritzen, Luca Zanini

AccApp ’17, Quebec City - August 3rd, 2017
Outline

• The ESS target imaging system
 • Motivation and goals
 • Principle of target imaging
 • Proposed realization
 • Neutronic simulations

• Target image reconstruction
 • Methods and approximations
 • Monte Carlo simulations
 • Preliminary results

• Status and outlook
 • Code development
 • Test rig
The ESS target imaging system

Motivation and goals

The ESS Target Wheel...

- 2.5 m diameter
- suspended on a 6 m long shaft
- 36 sectors of 10° each
- 7000 tungsten bricks (3 tons)
- 2500 tons of shielding steel around

...will operate in extreme conditions

- 3 MW heat deposit from 5 MW proton beam
- 2.86 ms long proton pulses with 4% duty cycle
- 7 million 100°C thermal cycles per year
The ESS target imaging system

Motivation and goals

Tungsten bricks operate in a **brittle regime** after exposure to radiation

- Conditions may induce the **cleaving of the tungsten bricks**
- Local reconfiguration or accumulation of small debris may result in the **blocking of the coolant channels**
- **Thermal and pressure stresses may not be relieved**, affecting the actual lifetime of the target wheel

Important to know from an operations perspective if the tungsten geometry is preserved over the 5 years of expected lifetime of the target wheel
The ESS target imaging system

Principle of target imaging

Activation of the tungsten bricks is mainly due to hadrons.

The spatial distribution of the decay gammas can be imaged through the target vessel.

The is TIS intended to provide high spatial resolution imaging of the decay gammas from the target wheel.

The image of the target inner structure can be used to confirm the correct operation conditions.
The ESS target imaging system

Proposed realization

- Brick size: $1 \times 3 \times 8 \text{ cm}^3$
- Width of cooling channels: 0.2 cm
- Required maximum spatial resolution: 0.1 cm
- Gamma emission collimated by means of a 2.8 m steel block with syncopated $1 \times 1 \text{ mm}^2$ grooves to ensure complete radial coverage of the wheel
- Azimuthal coverage achieved by means of the wheel rotation
- An array of scintillators is placed on top of the collimator block
- Scintillators coupled to optical fibers to convey the scintillation light to a high-sensitivity I-sCMOS camera
The ESS target imaging system

Neutronic simulations

Simulation workflow:

- MCNPX simulation with **protons** on the first sector
- CINDER’90 to calculate **nuclide inventory after 1 s** on the **first sector**
- **Gamma source** (bricks+vessel) copied to the imaged sector
- MCNPX simulation to calculate the **gamma flux** at scintillators
- Independent MCNPX simulation for gamma and neutron **background** evaluation
Target imaging is done in **two stages**:

- Normal operation: **full-arc, time-averaged** acquisition for each individual sector;
- High-resolution operation: narrow gating **contouring** the problematic spot.

During high-resolution operation, **on-chip data accumulation** across successive rotations is performed to limit the final readout noise.
The first implementation of the code is based on two approximations:

- **thin-layer (2D):** given the attenuation length for 686 keV photons in tungsten, *only the top cm* is responsible for the measured signal;

- **cell rejection:** the collimator allows only gammas perpendicular to the target surface to reach the scintillators, so *no blurring* is included in the simulations.
The code is fully-integrated with the ROOT framework:

- Bricks and impurities are instances of **TBox objects**, thus 3D-ready;
- No limit to the number, position or shape of the simulated objects;
- Collimators are instances of TArc objects grouped into a **TH2D** \((r, \theta)\) **histogram**.
From the objects in the geometry, a Probability Distribution Function is defined:

- points, corresponding to emitted gammas, are sampled uniformly within the domain (wheel segment);
- hits in the detectors (arcs) are recorded if the sampled point is within the a brick or impurity;
- the number of sampled points is proportional to the TIS acquisition time;
- by default, the specific activity of each object is the same, i.e. impurities are fragments of the spallation tungsten;
- the relative intensity of the emission from each object can be adjusted to simulate different materials;
Target image reconstruction

Preliminary results

After the chosen exposure time (2 days), the collected image (left) is compared to a higher-statistics **ideal image** (right) obtained from a clean PDF, representing a healthy target.
Target image reconstruction

Preliminary results

The images are compared by means of the Pearson’s \(\chi^2 \) homogeneity test, which calculates the probability for the \textit{hypothesis of identity} to hold. The analysis of the \textit{normalized residuals} locates the anomalous bins and the \textit{Q-Q plot} estimates the probability for the residuals fluctuations to be normally distributed.
Increasing the number of angular bins (7 bins) and iterating the χ^2 test allows to identify the location of the anomaly and provides a 2D reconstruction of the imaged target sector. The image spatial resolution is proportional to the number of angular bins.
The Pearson’s test is a statistical estimator and its reliability must be evaluated to avoid false positive errors:

- after 1h of acquisition, the test is not able to identify any of the anomalies introduced (14%);
- after 10h, the probability of getting a reliable answer is 41%;
- after 1d, the probability is increased to 65%;
- above 2d of acquisition, the adopted test is completely reliable.
The code presented is the first step in the development of an image reconstruction and anomaly detection protocol and will serve as the basis for the future design of the TIS data acquisition software. However, several aspects of the image reconstruction methodology require further investigation:

- introduce background and noise effects;
- simulate impurities of different size and specific activity;
- automate the algorithm for blind analysis (splitting and re-iteration);
- randomize the anomaly placement to fully test the blind analysis procedure;
- implement different statistical checks to cross-verify the Pearson’s test;
- introduce a realistic description of the camera gating, mainly in terms of dead-time and maximum achievable fps.
A test-rig specifically designed for the DTU 60Co Terabalt source is currently under construction and will be used as a proof of principle for the imaging system.

The gamma intensity of the 60Co source is comparable to that of the ESS target wheel.

It will allow to perform tests under conditions relevant to the actual ESS system.
Test rig

The test-rig will give the opportunity to investigate several aspects:

- **Spatial resolution** of the system: 1 mm, 0.5 mm grooves and several resolution targets on the wheel

- **Scintillator and fiber efficiency** in detection and transmission of the signal (losses due to attenuation, couplings and connections, radiation damage, etc.)

- Heating elements and temperature sensors to study the **signal degradation** at ESS operating conditions

- **Gating techniques and software controls:**
 1. Intelligent gating
 2. Signal processing
 3. Image reconstruction
 4. LabView for device controls (motors, encoders, sensors, heating elements, etc.)
Thank you for your attention