

Technology of High Power RF Couplers for Superconducting Resonators

Yongming Li Institute of modern physics 31/07/2017

Motivation

Coupler Design

> Operation Feedback

Project HIAF (2017-2024)

Project CIADS (2018-2024)

China Initiative Accelerator Driven System (CIADS)

Chinese ADS Front-end Demo Linac

frequency	162.5 MHz	162.5 MHz	162.5 MHz	162.5 MHz	325 MHz
output energy	2.1 MeV	5 MeV	9 MeV	17 MeV	25 MeV
cavity type	4-vane	HWR010	HWR010	HWR015	Spoke021
cavity number	1	6	6	5	6

Motivation

Coupler Design

> Operation Feedback

inane

Coupler for SC HWR010

HWR010 Coupler Main Concerns

MP simulation for the coupler

Windows position calculation

Inner conductor cooling w/o water

From, PH.D thesis of Fanbo Meng

Coupler RF test Stand

Test procedure 1.ARC: AFT 2.Vacuum interlock: 5E-5Pa 3. T rise: < 10° 4. MP voltage: <1V

 Travelling Wave Duty Factor: 1%, 10%, 50%, 75%, CW Freq: 100Hz,

2. Standing Wave Duty factor: 10%,
50%, CW Freq. 100Hz Phase shift: 10° /time total shift: 90°

Travelling Wave: 20KW, Standing Wave: 8KW (phase shifter)

10 MeV Coupler Operation

10 MeV operation for 2 months, ceramic windows of 2 couplers were leaking each CM.

Crack of ceramic window

New Coupler Design for HWR010

HWR010 Coupler Replacement online

Temporary Clean room for coupler replacement coupler replacement

New couplers has worked for more than 1 year, no leaks were found, and the new couplers work very well.

Coupler for SC HWR015

20 KW Coupler Design for HWR015

Goal: 1. 20 KW T/S wave test 2. S11< -20dBm 3. Leaking rate <10E-10 mbar*L/s 4. Temp. rise<10 °

- 1. Dual-windows more reliable
- 2. Easy for assembling
- 3. Reduce the size of the crymodule

New coupler RF design

Travelling mode (E_field)

NA La

Thermal & MP simulation

Thermal simulation

MP simulation

	4K (W)	80K (W)
static	0.1	10
20 KW (travelling)	0.8	35

No hard MP below 20 kW travelling wave

Coupler Fabrication

Coupler RF Test

Coupler RF Test

CW 20 kW for both travelling and reflecting modes

Motivation

Coupler Design

> Operation Feedback

Coupler Operation Feedback

The main concerns for the couplers during SC accelerator operation are the ARC, vacuum and electron probe interlock.

P.V. Tyagi et al, 2016, R. Ballantini et al, 1999

interlock

1 NAL

Summary of Cavity Gradient

Achivable gradient grow up with new cryomodules. Cavity Gradient will degrade with long time operation (leaking, Gas burst out from coupler).

LANTI

Coupler Brze

Braze for the windows

AgCuPd Braze ozzed

Arcing during the condition of the coupler.

Solve

Both of the two ways solve the problem.

Coating thin film for Windows

We try to coat TiN on the windows. But during the condition, the couplers still burst out of gas, especially after the assembling of the the new crymodule.

(a) after deposition, air exposure, and bake at $550 \cdot in \ vaccum$ for 10 h;, (b) exposed to room air 1h, (c) electron bombarded, total dose=3 E17cm⁻².

Extreme layer thinness resulted in a significant drop in the SEE yield

Nyaiesh et al : Properties of thin antimultipactor coatings

Solve for the MP caused by Windows

Bias for the inner conductor

We biased the inner conductor and no burst out of gas unless the bias unworked.

same conditions as previous side.

Cr2O3 layer produced a stable SEE yield, not as low as TiN. But it is sufficient to prevent electron multipactor.

Motivation

Coupler Design

> Operation Feedback

Summary

- Two types of dual-windows couplers have been developed at IMP, which proved reliable than signal window couplers. They all achieved their design goal 12 kW and 20 kwW.
- Electron activities are the main reasons for the coupler and SC cavity degradation.

For low beta cavity, couplers design should be considered the field emission in the SC cavity.

MP suppression in couplers need more work to do especially for SC cavites.

Thank you!

