# SIMULATION OF THE LIQUID TARGETS FOR MOLYBDENUM-99 PRODUCTION

Y.V. Rudychev, D.V. Fedorchenko, M.A. Khazhmuradov

National Science Center "Kharkov Institute of Physics and Technology" Kharkov, Ukraine

# <sup>99</sup>Mo/<sup>99</sup>Tc Production Technologies



#### Photonuclear Production of <sup>99</sup>Mo



3

# Photonuclear Production of <sup>99</sup>Mo

# Problems

High heat loads of converter and molybdenum target

Low specific activity of the produced <sup>99</sup>Mo

Complicated extraction process

Target recycling is impossible

# Recoil nuclei method



#### Liquid Target with Clinoptilolite Carriers



After irradiation carrier particles are filtered out for <sup>99</sup>Mo extraction

Suspension could be reused multiple times

#### **Simulation sequence**



# **Recoil nuclei spectrum**



#### Simulation of the recoil nuclei transport



2. M.H. Mendenhall, R.A. Weller, An algorithm for computing screened Coulomb scattering in Geant4, Nucl. Instr. Meth. B 227 (2005) 420

#### <sup>99</sup>Mo path calculation (ethylene glycol)



#### Simulation of the recoil nuclei transport



#### **GEANT4** Simulation

• 40 nm nanoparticle

(pure <sup>100</sup>Mo, MoO<sub>3</sub>)

- 160 nm carrier particle clinoptilolite (Na,K,Ca)<sub>2-3</sub>Al<sub>3</sub>(Al,Si)<sub>2</sub>Si<sub>13</sub>O<sub>36</sub>·12H<sub>2</sub>O
- Ambient liquid ethylene glycol
- Photon energies 10-30 MeV
- Distance between molybdenum nanoparticle and carrier: 20, 40, 60 nm (distances between surfaces)

# Results – <sup>100</sup>Mo nanoparticles



- For the high energy photons 10% of the created <sup>99</sup>Mo nuclei hit the carrier particle
- For the Giant Dipole Resonance (GDR) energies (12-18 MeV) hit ratio is below 2%
- For the GDR energies almost all <sup>99</sup>Mo nuclei (≈99%) are captured by the carrier

# Results – MoO<sub>3</sub> nanoparticles



- For the high energy photons 12% of the created <sup>99</sup>Mo nuclei hit the carrier particle
- For the Giant Dipole Resonance (GDR) energies (12-18 MeV) hit ratio is below 3%
- For the GDR energies almost all <sup>99</sup>Mo nuclei (≈98-99%) are captured by the carrier

## Conclusions

| Results  | For the photon energies of 12-18 MeV (maximum cross section of <sup>99</sup> Mo production) ≈1-2% of <sup>99</sup> Mo nuclei hit the carrier |
|----------|----------------------------------------------------------------------------------------------------------------------------------------------|
|          | The clinoptilolite carrier has high capturing efficiency – up to 98-99% of <sup>99</sup> Mo nuclei are captured                              |
|          | For efficient capturing the distance between the surfaces of molybdenum nanoparticle and carrier particle must be 25-50 nm                   |
|          | Recoil <sup>99</sup> Mo nuclei from several molybdenum nanoparticles hitting the carrier particle could provide high specific activity       |
| Problems | The optimum concentration of the carrier particles and molybdenum particles needs to be defined                                              |

The optimal size of carrier particles needs to be defined