

Saskatchewan Centre for Cyclotron Sciences: A New Multi-User Research and Production Facility

(AccApp '17)

Ghilt Boudreault Facility Manager

Medicine.
Materials.
Energy.
Environment.

- ➤ Novel radioisotopes / radiopharmaceuticals
 - Nuclear imaging (humans, animals, plants)

- Production facility
 - Drug manufacturer (approved radiopharmaceuticals)
 - Source of revenue ROI

SCCS: relatively well equipped

+ strategically situated = Unique facility

Gives researchers in all branches of Life Sciences (Medicine, Veterinary Medicine, Agriculture, Environment...), thriving and wide-ranging at U of S, the opportunity to design, and ultimately produce, new drugs and probes

Nuclear energy Radioisotopes Radiation

- Nuclear technology
- Fire
- Electricity

• ...

→ Proper vs improper use

Tools

Why science teachers should not be given playground duty.

Nuclear tools - applications

Radioisotope power sources (heart pacemakers, beacons, satellites...) Medical applications: diagnosis and therapy Smoke detectors Detection and analysis of pollutants Measurement of rate of wear of engines and plant and equipment Dating Material sciences – ion beam analysis, neutron activation Leak detection Food irradiation and blood irradiation Leveling gauges Sterilization of medical equipment

SCCS:

- → Facility owned by U of S
- → Operated by Fedoruk Centre (Sylvia Fedoruk Canadian Centre for Nuclear Innovation)

Fedoruk Centre:

- → Established in December 2011 under the Canada Not-for-Profit Corporations Act
- → Wholly-owned subsidiary of U of S

Sylvia Fedoruk (1927 – 2012)

Canadian physicist — medical physicist (only woman doing medical physics research in Canada in the 1950s)

- Part of a team who did pioneering work in treatment of cancer using cobalt-60 radiation therapy
- The Cobalt 60 Therapy Unit was the first effective Cobalt Radiation Therapy machine for use on patients with cancer
- First cancer patient to use the Cobalt 60 Therapy Unit lived another 50 years and died only recently, well into her nineties!
- Later in her career, worked on developing the Dosimeter
- First woman member of the Atomic Energy Control Board of Canada (now CNSC)
- Chancellor of the University of Saskatchewan (1986-1989)
- Lieutenant Governor of Saskatchewan (1988 to 1994)

- Part of the winner team (Joyce McKee) of the first Canadian Ladies Curling Championship held in Oshawa, Ontario (1960)
- President of the Canadian Ladies Curling Association (1971 to 1972)
- As a member of the Joyce McKee curling team, was inducted into the Saskatchewan Sports Hall of Fame (1973)
- Inducted into the Canadian Curling Hall of Fame, as a builder

Fedoruk Centre

VISION:

- → Placing Saskatchewan among global leaders in nuclear research, development and training through investment in partnerships with academia and industry for maximum societal and economic benefit.
- → Making positive impacts in 4 areas:
 - Nuclear Medicine, Instruments and Methods
 - Nuclear Techniques for Materials Research
 - Nuclear Energy and Safety Systems (including Small Reactor Technology)
 - Physical and Social Environment (management of benefits and risks of nuclear technology)

MAIN FOCUS SO FAR:

Fedoruk

Centre

FROM REDGIST CAMBAN CHITE

FROM REDGIST CAMBAN CHITE

- → Building and bringing into operation SCCS on U of S campus
- → Creating the framework from which a successful, world leading and sustainable nuclear imaging research and teaching program can grow

- → Former animal husbandry facility on campus turned into a cyclotron facility
- → CPDC at McMaster University assisted with regulatory affairs and help establish an overall quality system
 - → Overall cost for renovating, commissioning, and bringing into operation: \$CAN25 million
 - WD (Western economic Diversification)
 - Innovation Saskatchewan
 - Fedoruk Centre

Project calls:

- → Fedoruk Centre invites researchers, institutions, and partners to participate in building a community of expertise that will place Saskatchewan among global leaders in nuclear research and innovation
- → To date, the Board of Directors has allocated \$5 million for project calls:
 - > \$CAN4 million has been committed to some individual projects (27)
 - < \$CAN1 million left for future calls for project proposals

Nuclear imaging:

- → \$CAN3.45 million to establish 3 Fedoruk Chairs:
 - Radiopharmacy
 - Nuclear Imaging
 - Nuclear Physics (Detection Technologies)

Class II nuclear facility → Particle accelerator

- → TR24 cyclotron from ACSI
 - → Accelerate protons up to 16-24 MeV (~22% of speed of light)
- → Personnel: trained as NEW (Nuclear Energy Worker)

Regulatory body: CNSC

(Canadian Nuclear Safety Commission)

- → Permit / commissioning
- → Inspections
- → Research applications submission

Production / drug manufacturing

- → Medical care: patient injection
 - → GMP (Good Manufacturing Practices)
 - → Strict and stringent rules / guidelines
 - → Strong QA system
- → Clinical trials → License

Regulatory body: HC

(Health Canada)

- → License issuance
- → Inspections

Work at SCCS

Saskatoon

U of S

SCCS: Strategically situated

- → U of S: Amazing concentration of resources on one campus which allows for advancing basic, translational and clinical research and commercialization of the drugs via collaborative work
- → Life Sciences at U of S: Thriving and wide-ranging
- Agricultural Biology
- Agricultural Economics
- Agronomy
- Anatomy and Cell Biology
- Animal Bioscience
- Animal Science
- Applied Plant Ecology
- Arts and Science Transition Program
- Biochemistry
- Biochemistry and Biotechnology
- Bioinformatics
- Biology
- Biotechnology, Microbiology and Immunology
- Combined Kinesiology/Education
- Crop Science
- Dentistry
- Diploma in Agronomy

- Environmental Science
- Exercise and Sport Studies
- Food and Bioproduct Sciences
- Global Health
- Health Studies
- Horticulture Science
- Medicine
- Microbiology & Immunology
- Nursing
- Nutrition
- Pharmacy
- Physiology & Pharmacology
- Psychology
- Resource Economics and Policy
- Resource Science
- Soil Science
- Veterinary Medicine

SCCS: main facility and research wing layout

SCCS: staff

- 1 Facility Manager
- 1 QA Manager
- 1 Safety and Compliance Officer
- 1 Research Wing Coordinator
- 1 Cyclotron Engineer
- 1 Senior Production Technologist QA Designate
- 3 Production Technologists
- 1 Administrative Assistant
- 1 Clinical Research Coordinator (College of Medicine)
- = team of 10-12 + U of S cleaning/service/maintenance staff
- + over 25 affiliated researchers/facility users (including 4 top-level radiopharmacists/radiochemists)

SCCS main facility

- → Cyclotron: ACSI high-current TR-24 model (with expanded injection and RF systems)
 - Variable energy: 16 (approximately) to 24MeV
 - Beam current: up to 500μA extracted (all energies)
 - 1× split beamline: → 2× beamlines (doublet quads and X-Y steering on each)
 - Room for a second split beamline to be added in future
 - 2× 3-port target selectors (one fixed to cyclotron, one terminating a beamline)
 - Dual bombardment possible

→ Targetry available

Modular targets allow for reconfiguration of the target selectors (all ports have access to water and helium cooling):

- 3× ACSI F-18, 100μA water targets (used in GMP production of ¹⁸F-FDG);
 - 2 on cyclotron: 1 for daily productions
 - 1 held as spare, mounted and ready to be used
 - 1 dismounted: for decay and maintenance
 - Remark: may be used to make ¹³N in a limited capacity
- 1× ACSI C-11, 40μA gas target
- 1× ACSI 90° solid target (coin) holder; can operate up to 70μA (coin target may have a lower maximum depending on material) [On order; not yet installed]
- 1× ACSI high-current solid target station (500µA maximum current to target)
 complete with automated pneumatic transfer system to processing hot cell
 - Remark: Dedicated solid target station allows high current bombardments and an automated transfer system to maximize production yields
 - Remark: 7° solid target station; can operate up to 500μA (specific target may have a lower maximum depending on material)

Note: 2 port locations are still unoccupied

→ cGMP clean rooms and production labs

- 4× Comecer Grade C mini hot cells [BBS2-V-75]
- 1× Comecer Grade A (with laminar flow) dispensing hot cell [MIP1-1P 1330 LAF] (with Grade B prechamber)
- 1× pair of Tru-Motion telemanipulator arms [TM2748 10L]
- 2× GE FASTlabs FDG synthesizers
- 1× Capintec dose calibrator [CRC-55T]
- 2× PBI SPA microbial air samplers [SAS Super 180]
- 3× Lasair non-viable particulate monitors [1× 5100] [2× 310C]
- 2× Millipore bubble point gauges (Millex Integrity Tester) [SLTest000]

→ QC labs

- 1× Agilent GC with headspace sampler
 - GC System [7890B]
 - GC Headspace Sampler [7697A]
 - GC Injector/Autosampler [G4513A]
- 1× HPLC with UV detector and flow count detector
 - Waters separations module [Alliance e2695]
 - Waters UV/VIS detector [2489 UV/VIS Detector]
 - Eckert & Ziegler flow count detector (for HPLC) [B-FC-1000]
- 1× Capintec dose calibrator [CRC-55T]
- 2× Charles River endotoxin readers [Endosafe PTS]
- 1× Binder lab oven [FED115]
- 1× Mott fume hood [Mott7428000]
- 2× TLC
 - Eckert & Ziegler TLC scanner [B-AR2000-1]
 - Eckert & Ziegler TLC add-on to HPLC (Mini-Scan with Flow Count)
- 1× Mettler Toledo analytical balance [XPE205DR]
- 1× Mettler Toledo top loading balance [MS30025]
- 1× Panasonic fridge/freezers [MPR414-F]
- 2× Panasonic incubators [MIR-154]

→ Research labs

- 4× Comecer Grade C mini hot cells [BBS2-V-75]
- 2× Comecer Grade C dispensing/processing hot cells [MIP1-1P 1330]
- 1× pair of Tru-Motion telemanipulator arms [TM2748 10L]
- 1× Eppendorf thermomixer
- 1× ThermoFisher centrifuge and rotor (with purification accessories)
- 1× UPLC/HPLC and radiation detector
 - ThermoFisher Vanquish UPLC/HPLC
 - Eckert and Ziegler radiation detector for HPLC
- 1× Fisherbrand hot plate stirrer
- 1× Trasis mini AIO synthesizer
- 1× Panasonic fridge/freezers [MPR414-F]
- 1× Capintec dose calibrator [CRC-55T]

→ Miscellaneous

- Hand/foot monitors
- Survey meters

SCCS: research wing

Note: partially renovated

- → \$CAN1.72 million for molecular imaging equipment (from the Fedoruk Centre)
 - Preclinical imaging equipment (microPET)
 - Plant detection system (PhytoPET)
 - Radiochemistry equipment

→ Animal housing room

- 1× Ventilated rack system for mice/rats
 - Can accommodate 128 small cages (up to 4-5 mice per cage
 → capacity of 500-600 mice) or 64 large cages (rats)
 - Connected to emergency power (in case of power cut)
- 1× Biosafety cabinet
- 1× Infrared heating lamp
- 1× Light timer switch

→ Preclinical (animal) imaging room

- 1× MILabs VECTor⁴CT scanner (tri-modality PET/SPECT/CT scanner)
 - True simultaneous SPECT and PET images down to sub-mm resolution in mice
 - 4D movies of pharmaceutical interaction with tissue, time resolution of few sec
- 1× Benson Medical Industries mobile anesthetic system
- 1× PhysioSuite monitoring system for mice and rats
 - Warming pad
 - Temperature sensors
 - MouseSTAT and pulse oximeter sensors
- Few warming pads with water pump

→ Computer/control room

- 1× Acquisition super-fast computer
 - Fast 1× 4 Core Intel CPUs
 - 2 GB internal memory
 - 180 GB hard disk for operating system (Microsoft Windows Professional)
 - 1 TB hard disk for user data
- 1× Reconstruction super-fast computer
 - Fast workstation with 2x 16 Core CPUs
 - 64 GB internal memory
 - 120 GB hard disk for operating system
 - 6 TB disk array for user data
 - 24" LCD screen, Microsoft server 2008
- 1× MILabs advanced software package for data acquisition and image reconstruction
 - List-mode data acquisition (multi-isotope SPECT and/or PET imaging, retrospective gating, easy scan time and dose)
 - Batch-mode reconstruction functionality
 - Corrections for attenuation, scatter, resolution loss, and distant dependent sensitivity

- 1× Professional PMOD software (data processing, visualization, and quantitative analysis)
- Data format: DICOM 3.0, Interfile, ACR/Nema, Analyze, and NIfTI
- Reconstruction time: 3 minutes to 1 hour, depending on voxel size and scan area
- Minimal voxel size for SPECT collimator:
 - 0.125 for XUHR-M
 - 0.2 mm for UHR-M
 - 0.4 mm for GP-M, UHS-M and XUHS-M
 - 0.8 mm for UHR-RM, GP-RM
 - 1.6 mm using the GP-MSA
- Minimal voxel size for high energy SPECT/PET collimator:
 - 0.4 mm using the HE-UHR-M
 - 0.4 mm using the HE-UHR-RM
- Other characteristics:
 - Remote access
 - Live monitoring of animal
 - Multiple isotope imaging
 - Dynamic imaging

¹¹¹In - DOTA - SUM149 - 24h post injection

89Zr - NIMO - MB468 - 168h post injection

→ Radiochemistry lab

- 1× Perkin Elmer automatic gamma counter [2480 Wizard]
- 1× HPLC with UV, fluorescence and radio-TLC detector
 - Waters bioseparations module [2796]
 - 2× Waters Dual I absorbance detector [2487]
 - Waters Multi I fluorescence detector [2475]
 - Lablogic radio-TLC detector [Scan-ram]
 - Automatic fraction collection
- 1× Balance [OHAUS ex423]
- 1× Water bath
- 1× Sonicator
- 2× Thermomixer
- 2× Centrifuge
- 1× Fridge (4°)
- 1× Freezer (-20°)
- 2× Berthold contamination monitor [LB 124]
- 1× Dose calibrator

Summary: 89Zr - NIMO - MB468

Current radioisotope production

→ ¹⁸F-FDG

- Proton beam at 16MeV on ¹⁸O-enriched water ¹⁸O(p,n)¹⁸F
- Cancer diagnosis
- Reliable daily supply to RUH on campus since June 2016
- Marketing authorization (NOC) since January
 2017
- Back-up supply to Foothills Nuclear Medical
 Centre in Calgary since July 2017
- Trying to reach out to other customers → logistic is a challenge

Projects in the pipeline

- → Implementing ¹⁸F-NaF productions
 - ¹⁸F is already produced on site
 - NaF synthesis: easy and straightforward
 - Interesting candidate for bone scan

→ ⁶⁸Ga produced using cyclotron

- Some interesting ⁶⁸Ga-radiolabeled complexes candidates
 - ⁶⁸Ga-DOTATOC for NET (Neuroendocrine Tumor) investigations
 - ⁶⁸PSMA (Prostate-Specific Membrane Antigen) for prostate cancer investigations
- At present: use of new generation of ⁶⁸Ge/⁶⁸Ga generators
 - Expensive
 - To be renewed after 10 months
 - As time goes by quality decreases (more radionuclidic impurities)
- Plan: produce ⁶⁸Ga using the cyclotron
 - Use conventional ¹⁸F water target
 - Load target with ⁶⁸Zn-enriched solution
 - Shoot proton beam below 12.3MeV (to avoid production of ⁶⁷Ga)

- Biological distribution in small fish (no imaging)
- Low yields: < 1mCi (37MBq)
- Plan: produce ⁶⁴Cu using the cyclotron
 - Shoot proton beam on ^{nat}Ni metal foil (500μm, Ø 10mm)
 - Irradiation: 15μA, 3h, below 15MeV (beam stopped in foil)
 - Cheap, no target recycling
 - Final product: in a NaCl saline solution

- Mainly for plant imaging
- Gas target

- Facility has all necessary equipment (solid target station...)

→ Development of new ¹⁸F-based PET probes

- Design and synthesis of probe candidates
- Imaging the activity of enzymes important to human health
- ¹⁸F-labeled versions of the compounds for microPET imaging studies
- Clinical translation

→ ⁸⁹Zr-Nimo antibody radiolabeling project: C-BIRD

Nimotuzumab: anti-EGFR antibody → imaging agent for EGFR-positive cancers

- ⁸⁹Zr solid target (coin) holder design and tests
- ⁸⁹Zr coin solid target + energy degrader tests
- 89Zr-Nimo radiolabeling
- Pre-clinical validation
- Clinical trials
- Manufacturing (89Zr-Nimo)

Started November 2016 (89Zr ordered from Sherbrooke)

→ Novel chelators for labeling peptides and antibodies with radiometals

- Chelators in radiochemistry: Harnessing radioactive metals to image and treat cancer and severe multidrug-resistant bacterial infection
 - Over-abundant use of antibiotic drugs over the past few decades: multi-drug resistance has been observed in an increasing number of bacteria and is emerging as a global threat to health
 - Infectious disease a growing part of molecular imaging
 - Molecular imaging probes can be "tweaked" for use as radiotherapeutics

New chelators

- Increase stability of exiting radiometal-based drugs
- Improve efficacy of all existing and new drugs that use a specific radiometal

New applications

- Develop existing bacteria imaging agents to improve targeting

→ New approaches to radioimmunotherapy

- Of cancers: melanoma, osteosarcoma
- Of infections: opportunistic fungal infections

PhytoPET: Positron Emission Tomography for Plants

(collaboration with U of R)

→ First of its kind in Canada

→ Study biological processes in plants

- Will provide insights that can be used to develop new crop varieties and breeding
- Will allow us to address climate change issues (increased levels of carbon dioxide...)
- Will allow us to study interaction between roots and beneficial microbes in the soil
- Will help optimize response to environmental stresses like:
 - higher temperatures
 - drought
 - declining water level
 - infection or insect attack

- Currently has 4 detector heads (more can be added)

- Detector area: ~6x6 cm²
- Spatial resolution of fully 3D-reconstructed PET images <2mm (with sealed ²²Na point source and optimal geometry)

<u>Modular system</u>: fully adjustable detection geometry designed to accommodate various plant imaging scenarios:

- roots
- individual leaves
- whole plant

PhytoCount: Radiation counting system for highthroughput scanning of plants

- Novel, multi-channel radiation-counting detection system
 - Allows high-throughput scanning of radio-labeled molecule uptake and kinetics in plants

Plant imaging system mounted in a hot cell in main facility (only for 1 week, June 12-16)

Imaging roots and monitoring transport of glucose (FDG)

Preliminary – Glucose (FDG) allocation in Canola roots)

EXPANSION CAPACITIES

- → Main facility
 - → Rooms still vacant in cGMP clean area
 - → Radiopharmacy expansion capacities
 - → Room for additional bulk equipment (biosafety cabinets...)
 - → Rm 168.1 (between production and research hot labs): vacant
 - → Proposal submitted
 - → Integrate into cGMP area
 - → Outfit it with Grade A processing/dispensing hot cells, mini hot cells, telemanipulator arms, etc.

EXPANSION CAPACITIES

- → Research wing
 - → 1 small room being renovated
 - → Cell Culture Room
 - → Temporarily also used for anesthesia/euthanasia procedures
 - → Awaiting funding to renovate remaining 3 large and 2 small rooms
 - → 1 large room: Phytosuite equipped with plant growing chamber and all necessary equipment for establishing a strong plant imaging research program (academia + industry)
 - → 1 small room: Necropsy suite
 - → More pre-clinical imaging equipment (additional microPET scanner...)

Visit from Minister of Science Kirsty Duncan

(January 2017)

- Medical geographer
- Published a book about her 1998 expedition to uncover the cause of the 1918
 Spanish flu epidemic
- Also currently an adjunct professor at the University of Toronto

Visit from <u>Premier Brad Wall</u> and <u>Minister of Health Jim Reiter</u> together with the media (July 2017)

- → To celebrate our recent achievements
 - Reliable supply of ¹⁸F-FDG to RUH for > 1 year
 - Back-up supply of ¹⁸F-FDG to Foothills Medical Centre in Calgary

The end! Thank you!

@FedorukCentre

