THE SIRIUS FACILITY : A POWERFUL TOOL FOR STUDYING RADIATION EFFECTS IN MATERIALS

Jérémie Lefèvre, Olivier Cavani, and Bruno Boizot

Laboratoire des solides irradiés (UMR 7642) Ecole polytechnique Route de Saclay 91128 Palaiseau cedex FRANCE

Monday, July 31 2017

SIRIUS geographical location

- The SIRIUS^a facility is located at Laboratoire des solides irradiés (LSI^b)
- The LSI is a tripartite laboratory

- a Irradiation platform for innovation and scientific uses
- ^a Irradiated solids laboratory

UNIVERSITE PARIS-SACLAY

(4 冊 ト 4 三 ト 4 三 ト

The SIRIUS facility - Production of radiation defects

SIRIUS hosts a 2.5 MeV NEC Pelletron accelerator :

- Continuous electron beam
 - 150 keV < Energy < 2.5 MeV
 - 200 nA < Current beam < 40 $\mu \rm A$
- Few mm to few cm beam size
- New installation (2013) working 24h/24, 7d/7 (300 days a year)

Electron irradiation damages in materials

2 components of damage under MeV electron irradiation

Electronic component (Electron excitation/ionization) Nuclear component (Ballistic or displacement damage)

Homogeneous effects in the Single target volume (few mm thick displa materials)

Single or double atom displacements (knock-on mechanism)

Main research topics at SIRIUS facility

- Influence of electronic excitation in insulating materials
 - Nuclear fuel cycle (glass, concrete and clays)
 - Transient events under irradiation in components (quartz USO in space)
 - High density in optical materials (optical fiber performs)
- New materials for nuclear applications
 - Threshold displacement and migration energies from ballistic events (semiconductors, ceramics, metals)
 - Long term behavior of nuclear materials
- Irradiation as a tool for improving material properties
 - Doping effect (topological insulators, semiconductors, superconductors)
 - Radiografting (polymers, nanowires)
 - Nanostructuration induced by irradiation (plasmonic nanoparticles)

The SIRIUS facility - Study of radiation-induced defects

2 beamlines hosting numerous equipment for online measurements

Beamline	Setup available	Irradiation specificities			Experiment topics examples
		Temperature (K)	Current max (µA)	Sample types	
Line 1	CRYO1	20	20	Bulks	Conductivity measurements in superconductors and topological insulators (Bi_2Te_3, Bl_2Se_3)
	CRYO2	4 ≤ T ≤ 300	2	Bulks, powders	 Resistivity and Hall effect measurements in topological insulators (Bi₂Te₃) Electron paramagnetic resonance[*]
	IRRAPLAST	300	10	Polymers, nanowires	 Irradiation in PVDF for piezoelectrical applications Radiografting of polymers and nanowires
	LSIC*	$100 \le T \le 300$	40	Large flat samples (25 cm ² max)	Electrical measurements (IV characteristics) in real-size triple junction solar cells
	in situ spectroscopy	300	40	Bulks	Photoluminescence in Sm-doped glasses, UO ₂ discs Time-resolved photoluminescence in halide perovskites for photovoltaic applications Cathodoluminescence Raman spectroscopy
	users experiments	Depend on setup	40	Bulks, powders, liquids	 I-V measurements of solar cells under illumination Gas emitted during polymers irradiations analyzed by mass spectrometry
Line 2	CIRANO	300 ≤ T ≤ 450 (670 K possible)	40	Bulks (7 cm ² max), powders	 Defects production in nuclear glasses, Zy, Titania, UO2, SIC (<i>ex situ</i> characterization of induced point defects, threshold displacement energy calculations) Absorption in quartz crystal for space applications

* Under development

SIRIUS equipments (1/6) : CRYO1

Set-up properties

- H₂ recondenser (sample chamber filled with liquid H₂)
- T_{irr.,meas.} = 20 K
- $\bullet~{\rm Cooling~power}>\!25~{\rm W}$ at 20 K
- Beam current max $\sim 20 \ \mu A$
- *in situ* electrical measurements

Relevant recent works using CRYO1

- YAMASHITA et al., 2017, Fully gapped superconductivity with no sign change in the prototypical heavy-fermion CeCu₂Si₂, Sci. Adv., **3**:e1601667

ZHAO L. et al., 2016, Stable topological insulators achieved using high energy electron beams, Nat. Comm., 7:10957

CHO K. et al., 2017, Energy gap evolution across the superconductivity dome in single crystals of $(Ba_{1-x}K_x)Fe_2As_2$, Sci. Adv., **2**:e1600807

Irradiation induced doping of topological insulators

New class of materials \rightarrow insulating in the bulk, but with gapless edge or surface states Applications in spintronic and optoelectronic

Figure: Idealized band structure for a topological insulator. The Fermi level falls within the bulk band gap which is traversed by topologically-protected surface states.

Figure: Conductivity type inversion by irradiation with 2.5 MeV electrons in Bi₂Te₃ measured at 20 K.

Electron irradiation offers a path to large scale access to topological states

SIRIUS equipments (2/6) : CRYO2

Set-up properties

- Two stage 4 K pulse tube cryocooler (1.5 W at 4 K)
- 3 T superconducting magnet system
- 4 K \leq T_{*irr.,meas.*} \leq 300 K
- *in situ* electrical measurements (resistivity, Hall effect)
- EPR under development

Recent work using CRYO2

RISCHAU C.W. et al., 2013, Doping of Bi₂ Te₃ using electron irradiation, Phys. Rev. B, 88:205207

SIRIUS equipments (3/6) : IRRAPLAST

Set-up properties

- $T_{\text{irradiation}} = 300 \text{ K}$
- Air or inert atmosphere (He, Ar)
- Current beam up to sev μA
- Translation along one axis (15 cm amplitude)

Applications

- Effect of electron irradiation on PVDF piezoelectric properties
- Radiografting of polymer films and nanowires

Irradiation of PVDF piezoelectric polymers

Enhancement of PVDF piezoelectrical response due to radiation-induced point defects

MELILI G. et al., 2016 How swift-heavy ions and/or e-beam irradiations act on the piezoelectric response of nanostructured polarized PVDF films, GANIL-SPIRAL2 Week

SIRIUS equipments (4/6) : LSIC

Set-up properties

- Large irradiation surface area : $180 \times 130 \text{ mm}^2$
- 100 K \leq T $_{\rm irr.,meas.}$ \leq 300 K
- *in situ* electrical measurements
- LED solar simulator to be implemented

Application

Irradiation of large surface plane samples (real-size TJ solar cells)

LEFÈVRE J. et al., 2017, Dedicated tool for irradiation and electrical measurement of large surface samples on the beamline of a 2.5 MeV Pelletron electron accelerator, E3S Web of Conferences **16**:16003

Degradation of TJ solar cells under irradiation at low T

Loss of power generation of solar cells due to radiation-induced defects at <u>low T</u> (minority carriers trapping + tunneling effect)

Figure: Light I-V characteristics of a TJ solar cell at 123 K before and after 1 MeV electron irradiation $(1.5 \times 10^{15}/\text{cm}^2)$

Figure: Dark I-V characteristics (log scale) of a TJ solar cell at 123 K before and after 1 MeV electron irradiation $(1.5 \times 10^{15}/\text{cm}^2)$

Image: A marked and A marked

PARK S. et al., 2017 Origin of the degradation of triple junction solar cells at low Temperature, E3S Web Conf., 16, 11th European Space Power Conference

SIRIUS equipments (5/6): in situ spectroscopy

Set-up properties

- T_{irr., meas.} = 300 K
- Water-cooled sample holder
- Photoluminescence (PL), time-resolved PL, cathodoluminescence & Raman spectroscopy
- Pulse-tube cryocooler to be implemented

Applications

- Influence of damage sublattice on PL & Raman in sintered UO₂ discs
- Effect of temperature on radiation-induced point defects in silica
- Mechanisms responsible for the radiodarkening of optical fiber preforms

Time-resolved photoluminescence (PL)

Excitation wavelength (nm)	266, 355, 532				
Pulse duration (ns)	10 (at 10 Hz)				
Detection	SR-303i Shamrock spectrometer & ICCD Istar Andor camera				
Raman spectroscopy					
Detection	Jobin Yvon HR800 spectrometer				

Radiodarkening of optical fiber preforms

Darkening of rare-Earth doped optical fibers used for laser applications or in harsh environments

Figure: Emission of electron-irradiated Yb-doped fiber preforms samples under a 355 nm pulse laser excitation Figure: Recovery of the emission under the 355 nm laser beam during 2 hours Figure: Emission under 355 nm excitation with pulse gate delay and width (500 ns, 100 μ s) and (100 μ s, 10 ms)

Radiodarkening process of Yb-doped optical fiber preforms based on a pair association of Yb^{2+} with the so-called AlOHC point defects

OLLIER N. et al., 2016 in situ observation of the Yb^{2+} emission in the radiodarkening process of Yb-doped optical preform, Optics Letters, **41**, pp. 2025-2028

SIRIUS equipments (6/6) : CIRANO

Set-up properties

- $\bullet\,$ Current beam up to 40 μA
- 300 K ≤ T_{irr.} ≤ 450 K (670 K possible)
- Irradiation in air, inert atm., or under primary vacuum
- Powder or bulk samples (few cm² max)
- Water-cooled sample holder
- Optical apertures for *in situ* UV-VIS absorption measurements

・ 同 ト ・ ヨ ト ・ ヨ ト

Frequency drifts of quartz USO used in spacecrafts

Figure: Frequency variations of the Channel 1 USO observed on-board JASON1 satellite

Figure: *in situ* absorption spectrum of an electron-irradiated quartz crystal type USO

Radiation-induced transient defects in the quartz crystal structure responsible for the radiation sensitivity of quartz USO

CIBIEL G. et al., 2006 Ultra stable oscillators dedicated for space applications: oscillator and quartz material behaviors vs radiation, E3S Web Conf., 16, International Frequency Control Symposium and Exposition, IEEE

SIRIUS :

- is a platform dedicated to the production and study of electron-irradiation induced defects in materials
- hosts numerous equipment for online measurements
- welcomes an ever increasing number of international users
- is involved in a wide range of R&D topics

SIRIUS is a part of EMIR, the french network of accelerators dedicated to material irradiation...

The EMIR federation

Five complementary platforms :

JANNUS-Orsay

Saclay

CEMHTI Orléans

The EMIR platforms

Main specificities of the EMIR platforms (http://emir.in2p3.fr)

Platfom	Specificities	in situ characterizations					
IONS							
CEMHTI (Orléans)	HIGH-ENERGY LIGHT IONSCyclotron $H \rightarrow He$ $10 - 45$ MeVVdG $H \rightarrow He$ $0.5 - 3$ MeV	Large range of ions4 beam lines	 RBS Variable temperature Raman Mechanical stress 				
GANIL (CIMAP Caen)	$\begin{array}{c} \textit{SWIFT HEAVY IONS} \\ \text{IRRSUD} & C \! \rightarrow \! \cup 10 - 90 \text{ MeV} \\ \text{SME} & H \! \rightarrow \! \text{Bi} 0.5 - 570 \text{ keV} \end{array}$	 Large range of ions Effects dominated by electronic excitations 	 X-ray diffraction IR and UV-visible spectroscopies Gas emission 				
JANNUS (CSNSM Orsay)	DOUBLE BEAMS ARAMIS 2.0 MV H→Bi 0.5 - 15 MeV IRMA 170 kV H→Bi 0.5 - 570 keV	 Irradiation or implantation and TEM observation simultaneously 100 K < Tirradiation < 1200 K 	Transmission electron microscopy Raman and RBS spectroscopy, ERDA, NRA				
JANNUS (SRMP Saclay)	$\begin{tabular}{lllllllllllllllllllllllllllllllllll$	 Irradiation and implantation simultaneously 77 < Tirradiation < 800 K 	 Raman spectroscopy Rutherford backscattering spectrometry (RBS) Elastic recoil detection analysis (ERDA) Nuclear reaction analysis (NRA) 				
		ELECTRONS					
HVTEM (SRMA Saclay)	1.0 MeV	 Irradiation inside a high voltage TEM 300 K < Tirradiation < 1000 K 	Imaging of structural X-ray diffraction, environmental electron microscope				
SIRIUS (LSI Palaiseau)	CONTINUOUS ELECTRON BEAM 2.5 MeV	 Large irradiated area Large energy range 20 K < Tirradiation < 670 K 	Electrical measurements (Hall effect, resisitivity, IV characterization) Raman spectroscopy, absorption, time-resolved PL, cathodoluminescence Corrosion under irradiation Electron paramagnetic resonance being developed				