Neutron Capture and Total Cross Section Measurements of Cadmium at the RPI LINAC

Dr. Gregory Leinweber Bechtel Marine Propulsion Corporation Gaerttner LINAC Center, Rensselaer Polytechnic Institute

13th International Topical Meeting on Nuclear Applications of Accelerators 31 July-4 August 2017, Quebec, Canada

NNL/RPI Nuclear Data Group

BMPC/NNL

Dr. Greg Leinweber Dr. Robert C. Block Dr. Devin Barry Dr. Michael Rapp Dr. Kyle Remley Dr. John Burke Dr. Tim Trumbull Brian Epping Dr. Adam Daskalakis Dr. Brian McDermott

RPI Faculty

Prof. Yaron Danon - LINAC Director Prof. Li Liu

Technical Staff

Dr. Ezekiel Blain Peter Brand Michael A. Bretti Matt Gray Azeddine Kerdoun Larry Krusieski

Graduate Students

Adam Weltz Nicholas Thompson Kemal Ramic Carl Wendorff Amanda Youmans Jesse Brown Kumar Mohindroo Amanda Lewis **Undergraduate student** Adam Ney

RPI LINAC History

- The RPI LINAC started operation in December 1961
- Working "continuously" ever since
- September 1997- LINAC was designated as Nuclear Historic Landmark by the American Nuclear Society
- Graduated over 170 students who utilized the LINAC as part of their graduate thesis research
- Many years of accumulated experience

RPI LINAC Specifications 2017

	Three Sections (Low Energy Port)	Nine Sections (High Energy Port)		
Electron Energy	5 to 25 MeV	25 to over 60 MeV		
Pulse Width	6 to 5000 ns	6 to 5000 ns		
Peak Current	3A (short pulse: 6 to 50 ns) 400 mA (long pulse: 50 to 5000 ns)	3A (short pulse: 6 to 50 ns) 400 mA (long pulse: 50 to 5000 ns)		
Average Power	10 kw@ 17 MeV, 5000 ns	>10 kw@ 60 MeV, 5000 ns		
Peak Dose Rate	>10 ¹¹ Rads/sec (in Silicon)	n/a		
Neutron Production	n/a	~4 X 10 ¹³ neutrons/sec		
Pulse Repetition Rate	Single pulse to 500 pps (short pulse) Single pulse to 300 pps (long pulse)	Single pulse to 500 pps (short pulse) Single pulse to 300 pps (long pulse)		

RPI LINAC 2020 - Infrastructure Upgrades

- Constructed a new teaching/research laboratory
- Upgrade the klystrons, modulators, and accelerator sections

NNL/NCSP/RPI LINAC 2020 Refurbishment and Upgrade Plan

- Project aims at refurbishment and upgrade of the accelerator
 - Increase neutron production for short pulses
 - Increase the electron beam energy
 - Modernize the electron beam control system
 - Provide longevity
 - Replace all major components and acquire spares
- Funded by DOE-NR and NCSP through BMPC/NNL

RPI LINAC Specifications 2020 Refurbishment

Operation Mode	Pulse Width (ns)	Repetition Rate (Hz)	Beam Energy (MeV)	Pulse Current (μΑ)	Average Beam Power (kW)
Short Pulse	< 6	≤ 800	60 - 150	100	≥7
Low Rep. Rate	<250	25	60 - 150	16	≥1
High Power	Any	≤ 800	60 - 150	1000	≤ 45
Low Power	0 to ≥25	1 to 800	10 - 20	0- 10000	Any

Measurement Capabilities at the RPI LINAC

- Thermal Region: Transmission, Capture, Fission
- Resolved Resonance Region: Transmission, Capture, Fission
- Unresolved Resonance Region: Transmission, Capture, Fission
- Fast Neutrons: Transmission, Scattering, Prompt Fission Neutron Spectrum
- Lead Slowing Down Spectrometer: Fission, (n, alpha), (n, p),
 Capture

Nuclear Data are used in Reactor Design

Nuclear Reactor Design Limitations

- Modern computational methods are greatly improved
- Monte Carlo Methods
 - Advantages
 - Can describe the geometry at a level of a CAD drawing.
 - Includes different physics models in great detail.
 - Can solve time dependent problems.
 - Limitations
 - Accuracy is limited by Nuclear Data and Physics models
 - Slow for some types of calculations (but computers are getting faster)

Nuclear Reaction Cross Section

• The cross section represents the probability for neutron interaction and is measured in units of area.

Why parameterize the resonances?

• Parametrization advantages:

- Enables temperature (Doppler) broadening
- Save space
- Preserves unitarity
- Enables evaluations of experimental data.

Are We Improving Reactor Calculations ?

NUCLEAR SCIENCE AND ENGINEERING: 163, 17-25 (2009)

Impact of New Gadolinium Cross Sections on Reaction Rate Distributions in 10 × 10 BWR Assemblies

> G. Perret,* M. F. Murphy, and F. Jatuff† Paul Scherrer Institut, CH-5232 Villigen PSI, Switzerland

J-Ch. Sublet and O. Bouland Commissariat à l'Energie Atomique, DEN, Cadarache, 13108 St Paul lez Durance, France

and

R. Chawla Paul Scherrer Institut, CH-5232 Villigen PSI, Switzerland and École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland

Received July 28, 2008

correcting the overpredictions previously reported in the clustered gadolinium pins. Earlier reported discrepancies observed in PROTEUS integral experiments, between measured and calculated reaction rates in the gadolinium-poisoned pins, might thus be due to inaccurate gadolinium cross sections. The PROTEUS results support the new thermal and epithermal gadolinium data measured by Leinweber et al.

et al. and alifered significantly from current library values. ENDPTB-VILO gadolinium cross sections have currently been modified to include the new measurements, and these data have been processed with NJOY to yield files usable by MCNPX. Fission rates in the gadolinium-poisoned fuel pins of the SVEA-96 Optima2 pins were increased by 1.4 to 2.0% using the newly produced cross sections, yielding to a better agreement with the experimental values. Predicted Cs/Ftar ratios were decreased on average by 1.7% in both clustered and unclustered groups of gadolinium-poisoned fuel pins of the SVEA-96+ assembly correcting the overpredictions previously reported in the clustered gadolinium pins. Earlier reported discrepancies observed in PROTEUS integral experiments, between measured and calculated reaction rates in the gadolinium-poisoned pins, might thus be due to inaccurate gadolinium cross sections. The PROTEUS results support the new thermal and epithermal gadolinium data measured by Leinweber et al.

œ

Feedback of the new RPI Gd resonance parameters set on FUBILA Full MOX poisoned core calculation

> P. Blaise – O. Litaize Reactor Physics and Cycle Service (SPRC\LEPh)

CADA

Resonance Cross Section Measurements Data Analysis

•

Neutron Production

- 1. Bremsstrahlung X-rays are produced by stopping the electrons.
- 2. The X-rays produce neutrons by (γ, n) .

Neutron-Producing Targets

Enhanced thermal target

Bare bounce target

Time of Flight (TOF)

L

Energy-Time relation (nonrelativistic)

$$v = \frac{L}{t} \quad : \quad E = \frac{1}{2} m \cdot v^2 \implies E = \left(\frac{K \cdot L}{t - t_0}\right)^2$$

K - constant t_o - time zero (gamma flash)

- Energy Resolution
 - Related to:
 - $\Delta L/L$ moderator + detector
 - $\Delta t/t LINAC$ electron pulse

Transmission Experiment

Epithermal Transmission Experimental Setup

Capture Experiments

Highlights of the Cadmium Resonance Region Measurements

- Multiple samples, transmission and capture, thermal and epithermal

 Consistency among data sets provides confidence in common results.
- Background in transmission determined from separate "notch filter" runs to get the background shape
 - Normalized to a "fixed" notch
- Used the JENDL values for the negative energy resonances
 No negative energy resonance for Cd113 and none needed
 All other recommendation of secondary value with records to
 - All other resonances are of secondary value with regards to fitting the thermal cross section.
- Nuclear radii fit well
 - Data support a small adjustment in the Cd113 radius
 - Radii were fitted between resonances

Thermal Cd Measurements

	113(NNL/RPI	ENDF/ B-VIL 1	
	Thermal Capture Cross Section (barns)	Capture Resonance Integral	Energy (eV)	0.1779 ± 0.0002	0.1787
NNL/RPI	20051 ± 14	(barns) 383 ± 1	Γ_n (meV)	0.638 ± 0.008	0.6336
ENDF/B-VII.1 JEFF-3.2	19862 20165	384 400	$ \begin{array}{c} \Gamma_{\gamma} \\ (meV) \end{array} $	112.4 ± 0.4	113.5
1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.2 0.1 0.0 1.1 1.0 0.9 0.4 0.3 0.4 0.3 0.4 0.3 0.4 0.3 0.4 0.3 0.4 0.3 0.4 0.7 0.4 0.3 0.4 0.7 0.4 0.7 0.4 0.4 0.4 0.7 0.4 0.4 0.7 0.4 0.7 0.4 0.7 0.4 0.7 0.4 0.7 0.4 0.7 0.4 0.7 0.4 0.7 0.4 0.7 0.4 0.7 0.7 0.4 0.7 0.7 0.7 0.4 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7				+ 2 mil w 2 mil w \times 2 mil w \wedge 2 mil w \wedge 4 mil w + 4 mil w \wedge 4 mil w \wedge 10 mil v \sim 20 mil v	eek 1 data eek 2 data eek 3 data eek 1 data eek 2 data eek 3 data week 1 data week 1 data week 2 data week 3 data I lines NNL/RPI B-VII.1
Captrice 0.7 - 0.7 - 0.0	0.1			$ \begin{array}{c c} & & 1 \text{ mil w} \\ + & 2 \text{ mil w} \\ \times & 2 \text{ mil w} \\ \times & 4 \text{ mil w} \\ 0 & 20 \text{ mil} \\ + & 20 \text{ mil} \\ 1 & \text{ all solic} \\ 1 & \text{ constraints} \\ \end{array} $	veek 1 data veek 1 data veek 2 data veek 1 data week 1 data week 2 data d lines NNL/RPI /B-VII.1

Historical Evaluations of the Cd 0.178 eV resonance

Γn

Source	Energy, eV	Γ _γ , meV	Γ _n , meV	Date
NNL/RPI	0.1779	112.4 ± 0.4	0.638 ± 0.008	2017
JEFF-3.2	0.1787	113.5	0.64	2014
ENDF/B-VII.1	0.1787	113.5	0.63362	2011
JENDL-4.0	0.1787	113.5	0.64	2011
ENDF/B-VII.0	0.178	113	0.65333	2006
ENDF/B-VI.8	0.178	113.65	0.65333	2001

Historical Measurements of the Cd 0.178 eV resonance

¹¹³Cd Strength Functions

$$S_0 = \frac{\langle \Gamma_n^0 \rangle}{\langle D \rangle}$$
, where $\langle \Gamma_n^0 \rangle$ is the average reduced neutron

width, and *<*D*>* is the average level spacing for s-wave resonances

Source	Neutron Strength Function				
	in units of 10 ⁻⁴				
NNL/RPI	$0.35 \hspace{0.1 in} \pm 0.06$				
JEFF-3.2	0.33 ± 0.07				
ENDF/B-VII.1	$0.35 \hspace{0.1 in} \pm 0.06$				
JENDL-4.0	$0.35 \hspace{0.1in} \pm 0.07$				
ENDF/B-VII.0	0.35 ± 0.06				
Atlas 2006	$0.44 \hspace{0.1in} \pm 0.06$				
ENDF/B-VI.8	0.33 ± 0.10				
Atlas 1981	0.31 ± 0.07				

Cadmium Experimental Details

Experiment	Overlap	Neutron-	Elec-	Ave.	Beam	Pulse	Flight	Normalization Point
	Filter	Producing	tron	Beam	Energy	Repetition	Path	for Transmission
		Target	Pulse	Current	(MeV)	Rate	Length	Background or
			Width	(µA)		(pulses/s)	(m)	Capture Flux
			(ns)					(eV)
Epithermal	Boron	Bare	53	22	56	225	25.589	45 eV resonance in
Transmission	Carbide	Bounce					±	Mo95 fixed notch
							0.007	
Thermal			1875	12	50			
Transmission								18.8 eV resonance in
Week 1 of 3								W186
Thermal		Enhanced	920	6	55			
Transmission	None	Thermal				25	14.973	
Week 2 of 3		Target					±	5.2 eV resonance in
Thermal		_	900	6	60		0.004	Ag109
Transmission								
Week 3 of 3								
Epithermal	Boron	Bare	≈49	23	54	225	25.564	27 eV resonance in
Capture	Carbide	Bounce					±	Cd111 in the 200-mil
-							0.006	sample
Thermal	None	Enhanced	1400	11	50	25		
Capture		Thermal						
-		Target					25.444	0.178 eV resonance in
Thermal	None	Enhanced	770	8.5	54	25] ±	Cd113 in 20-mil
Capture		Thermal					0.004	sample data
		Target						

Transmission data for Cd

- Sample-in and open beam data before forming transmission fraction
- Includes fixed molybdenum "notch" at 45 eV
- Many more resonances in the Cd sample data

cps

Transmission Background Methods

• Use Notch $0 \approx (Notch 1)^2/Notch 2$

normalized to a fixed notch

Use of fixed notch normalization reduces the uncertainty in the notch extrapolation method

Transmission Background Method: Notch Extrapolation

Thermal Cd Signal-to-Background

Open Beam data and transmission background

Signal-to-Background Ratio

Epithermal Cd Signal-to-Background

Open Beam with Fixed Mo Notch and transmission background

Signal-to-Background Ratio

Cd 0.178 eV Resonance

Cadmium Resonance Region up to 1 keV

Account for Differences Between Data Sets External Uncertainties

•X refers to either E_R , Γ_n , or Γ_γ •The subscripts B and ext refer to final Bayesian uncertainties and external uncertainties 0.178 eV resonance in ¹¹³Cd individual sample fits Bayesian Fit External Error $\langle X \rangle_{ext} = \frac{\sum_{i=1}^{n} \frac{n_{i}}{\left(\Delta X_{B,i}\right)^{2}}}{\sum_{i=1}^{n} \frac{1}{\left(\Delta X_{B,i}\right)^{2}}} \qquad \sum_{i=1}^{0.7}$ Bayesian Fit Bayesian Error 0.6 $\Delta X_{ext} = \left| \left\{ \sum_{1}^{n} \frac{(X_i - \langle X \rangle_{ext})^2}{(\Delta X_{B,i})^2} \right\} / \left\{ (n-1) \sum_{1}^{n} \frac{1}{(\Delta X_{B,i})^2} \right\}_{0.5} \right|_{0.5}$ 1 16 data set no.

Conclusions

- Multiple measurements of Cd were performed in the resolved resonance region
- Thermal cross sections
 - Current results similar to ENDF/B-VII.1, JEFF-3.2, and JENDL-4.0, closest to JENDL-4.0
- Capture resonance integrals
 - Current results similar to ENDF/B-VII.1, JEFF-3.2, and JENDL-4.0, closest to JEFF-3.2, and JENDL-4.0
- RPI LINAC 2020 refurbishment and upgrade

- Ambitious project is underway and on schedule

Extra Slides

Reaction Rates

$$-dI = -[I(x+dx) - I(x)] = N\sigma_t I dx$$
$$\frac{dI}{dx} = -N\sigma_t I(x)$$
$$I(x) = I_0 \exp(-N\sigma_t x) = I_0 \exp(-\Sigma_t x)$$

Probability that a neutron will not interact in distance *x*: $\exp(-\Sigma_t x)$

 $p(x) = \exp(-\Sigma_t x)\Sigma_t$ Probability that the neutron will first collide in *dx*:

Probability to interact in between x=a to x=b: $p(a,b) = \int_{a}^{a} p(x)dx = \int_{a}^{b} \exp(-\Sigma_{t}x)\Sigma_{t}dx = \exp(-\Sigma_{t}a) - \exp(-\Sigma_{t}b)$ Probability to interact in an infinite slab: $p(0,\infty) = \int_{0}^{a} p(x)dx = \Sigma_{t}\int_{0}^{\infty} \exp(-\Sigma_{t}x)dx = \exp(-\Sigma_{t}0) - \lim_{x \to \infty} \exp(-\Sigma_{t}x) = 1$ The average distance a neutron travels before interacting with the sample, or the <u>mean free path</u>: $p(0,\infty) = \int_{0}^{\infty} p(x)xdx = \Sigma_{t}\int_{0}^{\infty} \exp(-\Sigma_{t}x)dx = \exp(-\Sigma_{t}a) - \exp(-\Sigma_{t}a) = 1$

The probability that a reaction of type y will occur in the interval [0,x],

$$p_{y}(0,x) = \int_{0}^{x} \exp(-\Sigma_{t}x)\Sigma_{y}dx = \Sigma_{y}\left(\frac{\exp(-\Sigma_{t}x)}{-\Sigma_{t}} - \frac{\exp(-\Sigma_{t}0)}{-\Sigma_{t}}\right) = \frac{\Sigma_{y}}{\Sigma_{t}}\left(1 - \exp(-\Sigma_{t}x)\right)$$

Resonance Reactions

- We understand the shape of the resonances and use R-Matrix theory to fit the shape to measured data.
- A simplified example is the Breit-Wigner single-level formula:

Cadmium Sample Information

- Sample purity: 0.9999 from Kamis Incorporated
- Natural metal samples:

1.25% ¹⁰⁶Cd, 0.89% ¹⁰⁸Cd, 12.49% ¹¹⁰Cd, 12.80% ¹¹¹Cd, 24.13% ¹¹²Cd, 12.22% ¹¹³Cd, 28.73% ¹¹⁴Cd, 7.49% ¹¹⁶Cd

• Sample thicknesses:

Nominal thickness (mm)	Areal density (atoms/barn)	Measurements
0.0254 (0.001 in.)	1.133E-4 ± 1E-7	Thermal capture
0.0508 (0.002 in.)	2.329E-4 ± 2E-7	Thermal transmission and capture
0.1016 (0.004 in.)	4.280E-4 ± 4E-7	Thermal transmission and capture, and epithermal capture
0.254 (0.010 in.)	1.1796E-3 ± 1.2E-6	Thermal transmission and epithermal capture
0.508 (0.020 in.)	2.3929E-3 ± 2.4E-6	Thermal and epithermal transmission, Thermal and epithermal capture
1.27 (0.050 in.)	5.8529E-3 ± 5.9E-6	Epithermal capture
2.54 (0.100 in.)	1.191E-2 ± 1E-5	Epithermal transmission
5.08 (0.200 in.)	2.4295E-2 ± 2.5E-5	Epithermal transmission and capture
10.16 (0.400 in.)	4.4260E-2 ± 4.5E-5	Epithermal transmission

Preparation of EXFOR Data and Headers

 Transmission and capture thermal and epithermal data files to be provided to the U.S. repository at Brookhaven National Laboratory

• Headers are to be sufficient to recreate the resonance parameter and uncertainty analysis

Traditional EXFOR Header

TITLE	Resonance parameters and uncertainties derived from epithermal neutron capture and transmission measurements of natural molybdenum
AUTHOR	(G.Leinweber, D.P.Barry, J.A.Burke, N.J.Drindak, Y.Danon, R.C.Block, N.C.Francis, B.E.Moretti)
INSTITUTE	(1USAKAP,1USARPI) (1USAUSA) US Military Academy, West Point, New York
REFERENCE	(J,NSE,164,287,2010) Main reference
FACILITY	(LINAC, 1USARPI) Rensselaer Polytechnic Institute LINAC facility
ANALYSIS	R-matrix Bayesian code SAMMY was used to extract resonance parameters from experimental spectra
HISTORY	(20100209C) Compiled by S.H.
REACTION	(42-MO-0(N,G),,RYL,,RAW)
SAMPLE	Natural Mo sample
	Physical type: Metal
	Chemical composition: Element (Molybdenum)
	Thickness: 0.051 mm, (3.088E-04+-1E-07) at/b
	Sample mounted in aluminum sample cans. The thickness
	of aluminum on each of the front and rear faces of
TNG COUDGE	each sample was 0.38 mm.
METHOD	(PHOTO) LINAC repetition rate: 200 puises/sec
	(IRN, IOF) FIIGHT pach 25.507 m (NATCR) A 16-fold gogmontod NaT(Tl) multiplicity-
DEIECIOR	type detector was used for capture measurements at
	25 m station
ERR-ANALYS	(ERR-S) 1 sigma statistical errors (absolute errors)
STATUS	(TABLE) Not given in J.NSE,164,287,2010
	Data obtained from D.P.Barry by e-mail
HISTORY	(20130111A) On. REACTION: ,TRN/RYL,,RAW -> ,RYL,,RAW
ENDBIB	17
COMMON	2 3
THICKNESS	TEMP
ATOMS/B	K
3.088E-04	£ 293.0
ENDCOMMON	3
DATA	3 5436
EN	DATA ERR-S
EV	NO-DIM NO-DIM
2.012/E+0	3 I.5993E-04 4.8325E-04

Standardized EXFOR Reporting

- A meeting of several experimentalists was held at IAEA in Vienna in October 2013 to discuss EXFOR reporting for resonance region experimental data (mostly transmission and capture).
 - Experimentalists: Guber (ORNL) ,Gunsing (CEA/nTOF), Kimura (JPARC), Noguere (CEA), Schillebeeckx (IRMM), Danon (RPI)
- The result of the meeting was a new template that capture the essential parameters of the different experiments
- Eu (Leinweber et al.) was the first RPI dataset to be reported using the new, more detailed measurement description
- ⁹⁵Mo (Bahran et al.) was the second.

•	А.	EXPERIMENT DESCRIPTION		
	1.	Main Reference		1
	2.	Facility	RPI	1,2,3
	3.	Neutron production		
		Neutron production beam	Electron	
		Nominal beam energy	56 MeV	
		Repetition rate (pulse/sec)	25	
		Pulse width	560 ns	
		Nominal beam power	470 W	
		Primary neutron production target	tantalum	
		Neutron source position in moderator	Enhanced thermal target	4,5
	4.	Moderator		
		Material	graphite	
		Dimension	Integral, see refs 4,5	
		(thickness, height×width×depth,)		
		Mass		
		Temperature (K)	20° Celsius	
		Target nominal neutron production intensity (n/sec)	1013	
		Moderator-room decoupler (Cd, B,)		
	5.	Other experimental details		
		Measurement type	Capture	
		Method (total energy, total absorption,)		
		Effective flight path length (m)	$14.96 \pm 0.02 \text{ m}$	
		Flight path angle with respect to moderator surface	Neutron beam is perpendicular to the	
			moderator surface.	
		Neutron beam dimensions at sample position $(mm \times mm \text{ diameter in } mm)$	Diameter of 2.54 mm	
		······, ······, ·······,	1	1

SAMMY Gaussian + tail

SAMMY has a form for Gaussian and exponential

$$f_{GE}(E) = \frac{1}{\Delta_E \Delta_G \pi} \int_{E-\Delta E_S}^{\infty} dE'' \exp\left\{-\frac{\left(E''-\left(E-\Delta E_S\right)\right)}{\Delta_E}\right\}$$
$$\times \int_{-\infty}^{+\infty} dE' \exp\left\{-\frac{\left(E'-E''\right)^2}{\Delta_G^2}\right\} f(E')$$

- Δ_{G} Gaussian width (moderator (ΔL) + channel width (Δt_{C}) + burst width (Δt_{G}) + other E dist (Δ_{c})) $\Delta_{att}^{2} = \frac{2}{3}E^{2}\left(\frac{\Delta L}{L}\right)^{2} + \frac{2}{m}E^{3}\frac{2}{3}\left(\frac{\Delta t_{c}}{L}\right)^{2} + \frac{2}{m}E^{3}\frac{1}{\ln 2}\left(\frac{\Delta t_{G}}{L}\right)^{2} + \Delta_{c}^{2}$,
- Δ_{E} exponential width (moderator + detector) $\Delta t_{E} = D_{1}E + D_{0} + D_{2}\ln(E)$ $\Delta_{E} = \frac{2E^{3/2}}{L(m/2)^{1/2}}\Delta t_{E}$
- ΔE_s shift center (use shift)

Example: SAMMY Gaussian + Exponential Resolution Parameters

	Thermal Capture	Epi-Thermal Capture	Epi-Thermal Transmission
DELTAL Flight path length	0.0055	0.0055	0.0055
DELTAG burst width	0.0254	0.0254	0.0254
DELTAE Exponential	0.1	0.1	0.1
DELTE: DELEO	0.06	0.06	0.18650
DELTE: DELE1	0	0	1.2687e-6
DELTE: DELE2	0	0	0.02069

EXPONENTIAL FOLDING width is energy dependent DO NOT SHIFT ENERGY for exponential tail

Example: RPI Resolution Function Thermal Region Transmission

Complicated function with many parameters (Enhanced thermal target + detector)

$$\begin{split} I_{2}(t) &= A_{0} \left\{ \frac{\left(t+\tau\right)^{2}}{2!\Lambda^{3}} e^{-(t+\tau)/\Lambda} + A_{1} \left[A_{2} e^{-A_{3}(t+t_{0})} + A_{4} e^{-A_{5}(t+t_{0})} \right] X(t) \\ &+ \sum_{i=1}^{5} B_{2i-1} e^{-B_{2i}(t+t_{0})} \right\} , \end{split}$$

 $\Lambda(E) = \Lambda_0 + \Lambda_1 \ln(E) + \Lambda_2 \left[\ln(E) \right]^2 + \Lambda_3 E^{\Lambda_4} \qquad \tau(E) = \tau_1 e^{-\tau_2 E} + \tau_3 e^{-\tau_4 E} + \tau_5 + \tau_6 E^{\tau_7} \qquad A_i(E) = \left\{ a_{i1} e^{-a_{i2} E} + a_{i2} e^{-a_{i4} E} + a_{i5} + a_{i6} E^{a_{i7}} \right\} \alpha_i$

Param	Value	Param	Value	Param	Value	Param	Value
τ_1	320.94	Λ_0	679.98	a ₁	-000078	A ₀	935.91
τ_2	0.02426	Λ_1	-226.21	a ₂	0.02407	A ₁	-69.068
τ_3	318.46	Λ_2	21.09	a ₃	-0.00063	A ₂	0.005
τ_4	0.02922			a ₄	3.53	A ₃	0.39485
τ_5	235.71			a ₅	0.000112	A ₄	0.0075

Bayesian vs Frequentist Data Analysis

- Should measurement reports be independent assessments of resonance parameters or minievaluations ?
 - Independent assessment needed to isolate the contribution of the current measurement
 - Bayesian theory insists that prior knowledge be included
 - Publication bias