

Neutron Displacement Cross-Sections for Materials from Be to U Calculated Using the Arc-dpa Concept

A.Yu. Konobeyev, U. Fischer, S.P. Simakov

INSTITUTE for NEUTRON PHYSICS and REACTOR TECHNOLOGY (INR)

Objective

- preparation of the data set for improved estimation of the number of defects produced in materials from Be to U
- calculation of atomic displacement cross-sections for neutron incident energies 10⁻¹¹ to 200 MeV using data from actual versions of ENDF/B, JEFF, JENDL, and TENDL

Atomic displacement cross-section

$$\sigma_{d}(\mathsf{E}_{p}) = \sum_{i} \int_{\mathsf{E}_{d}}^{\mathsf{T}_{i}^{max}} \frac{d\sigma(\mathsf{E}_{p}, \mathsf{Z}_{T}, \mathsf{A}_{T}, \mathsf{Z}_{i}, \mathsf{A}_{i})}{d\mathsf{T}_{i}} \,\mathsf{N}_{d}(\mathsf{T}_{i}, \mathsf{Z}_{T}, \mathsf{A}_{T}, \mathsf{Z}_{i}, \mathsf{A}_{i}) \,\mathsf{d}\mathsf{T}_{i}$$

 $d\sigma/dT$: recoil energy distribution

N_d : number of stable displacements produced by PKA

$$N_{d}(T) = \frac{0.8}{2E_{d}} \xi(T) T_{dam}(T)$$

Robinson formula (NJOY, MCNP, SPECTER)

$$T_{dam}(T) = \frac{T}{1 + k(Z_{PKA}, A_{PKA}, Z_T, A_T)g(Z_{PKA}, A_{PKA}, Z_T, A_T)}$$

NRT : reference model (poor agreement with experiments and MD)

$$\xi(T_{dam}) = 1$$

10⁵

Athermal recombination-corrected dpa (arc-dpa) concept*

Estimation of parameters of arc-dpa equations

I. Parameter c_{arcdpa} : asymptotic value of defect generation efficiency

$$C_{arcdpa} = \frac{E_d}{E_{deff}}$$

 E_{deff} : the effective threshold displacement energy < ξ > = 1 for neutron irradiation in reactors

 E_d : the averaged displacement threshold energy

$$\sigma_{d}(\mathsf{E}_{p}) = \sum_{i} \int_{\mathsf{E}_{d}}^{\mathsf{T}_{i}^{max}} \frac{d\sigma(\mathsf{E}_{p}, Z_{\mathsf{T}}, \mathsf{A}_{\mathsf{T}}, Z_{i}, \mathsf{A}_{i})}{d\mathsf{T}_{i}} \, \mathsf{N}_{d}(\mathsf{T}_{i}, Z_{\mathsf{T}}, \mathsf{A}_{\mathsf{T}}, Z_{i}, \mathsf{A}_{i}) \, \mathsf{d}\mathsf{T}_{i}$$

E_{dmin} : the minimum displacement threshold energy

The first systematics (1983)

 $E_{deff} = C_1 E_{dmin}$ (P.Jung) and $E_d = C_2 T_{melt}$ (Yu.Konobeev,Yu.Korovin)

"Blind" search for correlation for E_{dmin}

E_{dmin} data: Jung, Eckstein compilations (45 materials)

Quantity	Correlation coefficient
Z	0.22
ρ	0.76
T _{melt}	0.70
ρ T _{melt}	0.83
(ρ Τ _{melt}) ^{1/2}	0.85
E _{coh} *	0.78
E _{coh} /T _{melt}	-0.09
ρ Ε _{coh}	0.85

*cohesive energy: difference between the energy of free atoms and the energy of atoms in solid

Example

Estimated E_{dmin} values

Search for correlation for E_d

E_d: Jung, Broeders compilations (24 materials)

Quantity	Correlation coefficient
E _{dmin}	0.77
Z	0.38
ρ	0.54
T _{melt}	0.89
T _{melt} ^{3/2}	0.90
E _{coh}	0.86
E _{coh} ²	0.90
E _{coh} T _{melt}	0.91

Estimated E_d values

Atomic number

systematics: 31 ± 6 eV MD DFT*: 30 - 35 eV (unknown before analysis)

Ed,ave (eV)

⁹Be:

Search for correlation for E_{deff}

E_{deff}: Broeders compilations (21 materials)

Quantity	Correlation coefficient
E _{dmin}	0.47
E _d	0.58
Z	0.25
ρ	0.44
T _{melt}	0.50
E _{coh}	0.42

Estimated values of carcdpa

II. Parameter b_{arcdpa} : the rate of $\xi(T_{dam})$ decrease

$$<\xi>=\frac{\int \sigma_{d,arcdpa} \not\in \phi \not\in \notdE}{\int \sigma_{d,NRT} \not\in \phi \not\in dE}$$

22 neutron irradiation spectra

b_{arcdpa} value: from -1.5 to -0.2

Nordlund b_{arcdpa} data Fe, Ni, Cu, Pd, Ag, W, Pt, Au

Averaged efficiency values $<\xi>$ for tungsten (b_{arcdpa} , c_{arcdpa} : Nordlund)

Irradiation	ENDF/B-VIII.b4	JEFF-3.3T3	JENDL-4.0	TENDL-2015
APWR	0.26	0.24	0.24	0.25
KWO PWR	0.25	0.23	0.23	0.24
TRIGA/TRADE	0.24	0.22	0.23	0.23
TTB, FRM	0.25	0.23	0.24	0.24
Fission	0.22	0.21	0.20	0.21
14.8 MeV neutrons	0.17	0.15	0.15	0.16
(d,Be) 40 MeV deuterons	0.16	0.14	-	0.16
HFIR	0.25	0.23	0.24	0.24
PWR Robinson2	0.26	0.25	0.26	0.26
Typical LWR	0.26	0.25	0.25	0.26
EPRI, BWR 1/4T	0.24	0.24	0.23	0.24
EPRI, BWR 3/4T	0.27	0.25	0.26	0.26
EPRI, PWR 1/4T	0.26	0.25	0.24	0.25
EPRI, PWR 3/4T	0.30	0.28	0.29	0.29
LWR Kori	0.28	0.27	0.28	0.28
Omega West Reactor	0.24	0.22	0.23	0.23
EBR-II expr breeder reactor	0.26	0.25	0.25	0.25
Bor-60	0.27	0.26	0.25	0.26
RTNS-II Fusion simulation	0.17	0.15	0.15	0.16
ITER, first wall	0.21	0.18	0.18	0.18
DEMO	0.22	0.19	0.19	0.19
IFMIF	0.19	0.14	-	0.18

Material	$D = \frac{<\xi>_{max} - <\xi>_{min}}{<\xi>_{ave}} 100 \%$				
	ENDF/B-VIII.b4	JEFF-3.3T3	JENDL-4	TENDL-2015	
Со	< 20	31	31	<20	
Cu*	33	32	32	33	
Rh	<20	<20	43	<20	
Pd*	20	<20	<20	<20	
Ag*	30	<20	<20	<20	
Cd	31	70	31	72	
In	38	31	38	33	
Sm	64	65	64	65	
Eu	51	73	59	60	
Gd	59	61	60	62	
Dy	26	21	28	23	
Er	29	<20	29	<20	
Lu	32	<20	—	<20	
Hf	<20	<20	32	<20	
W *	56	68	59	61	
Pt*	-	28	_	28	
Au*	112	112	62	40	
Hg	86	45	83	44	

* \mathbf{b}_{arcdpa} : Nordlund, \mathbf{b}_{arcdpa} = –0.8 in other cases

Li to U: 70 materials

Fe, Ni, Cu, Pd, Ag, W, Pt, Au: Nordlund data or c_{arcdpa}, b_{arcdpa} obtained

Co, Cd, In, Sm, Eu, Gd, Dy, Hg: c_{arcdpa} obtained, b_{arcdpa} is very approximate

other materials: c_{arcdpa}, b_{arcdpa} obtained

MD: Borodin, Vladimirov (KIT), Nucl. Mat. Energy (2016)

Calculation of displacement cross-sections

ENDF/B-VIII.beta4, JEFF-3.3T3, JENDL-4.0, TENDL-2015

Extension of the data up to 200 MeV

Examples

Atomic displacement cross-sections for materials from Be to U

Neutron incident energy: from 10⁻¹¹ to 200 MeV Format: ENDF-6 and ACE

arc-dpa (MT=900) and NRT model (MT=901)

ENDF/B-VIII.beta4: <u>https://goo.gl/RkAbvk</u> JENDL-4.0: <u>https://goo.gl/FwLqPi</u> TENDL-2015: <u>https://goo.gl/9YgwCQ</u>

Conclusion

Atomic displacement cross-sections were calculated for materials from Be to U at neutron energies up to 200 MeV using arc-dpa model

This work has been carried out within the framework of the EUROfusion Consortium and has received funding from the Euratom research and training programme 2014-2018 under grant agreement No 633053. The views and opinions expressed herein do not necessarily reflect those of the European Commission.