## MCNP6 Simulations of Active Neutron Interrogation of Fissile Samples using a Deuterium-Deuterium Neutron Generator

### <u>Fawaz Ali</u>, Ghaouti Bentoumi *Canadian Nuclear Laboratories*

Accelerators for Monitoring the Environment - II Tuesday, August 1, 2017

> Canadian Nuclear | Laboratoires Nucléaires Laboratories | Canadiens

UNRESTRICTED / ILLIMITÉ -1-

## Outline

- Introduction to Active Neutron Interrogation using DD Neutron Generator
- MCNP6 Simulation Strategies for Delayed Neutron Emission
- Delayed Neutron Yield from Active Neutron Interrogation Irradiations using DD Neutron Generator
- Conclusions and Future Work



# Introduction to Active Neutron Interrogation using DD Neutron Generator

Canadian Nuclear | Laboratoires Nucléaires Laboratories | Canadiens

**Purpose of Study** 



At Canadian Nuclear Laboratories (CNL),
a Deuterium-Deuterium (DD) neutron
generator has recently been installed in the
Health Physics Neutron Generator (HPNG)
facility

٠

Monte Carlo N-Particle version 6
(MCNP6) is used to simulate active
neutron interrogation of a variety of fissile
materials using the DD neutron generator
and determines the *approximate* minimum
mass of fissile materials that can be
interrogated by the generator

## **Active Neutron Interrogation**



#### Time

### Figure 1

Time Profile for Active Neutron Interrogation Irradiations (Amiel, 1962 [1])

Canadian Nuclear | Laboratoires Nucléaires Laboratories | Canadiens

Absolute Counts Recorded in <sup>3</sup>He Elements of Delayed Neutron Counter Instrument

Figure 2 Interrogation of Fissile Sample using <sup>252</sup>Cf Embedded Inside a Delayed Neutron Counter

Inset: Positioning of <sup>252</sup>Cf Neutron Source with respect to Fissile Sample





Elapsed Time Since End of Delay Period (s)

Counting profile *above* background levels indicates the presence of fissile material in interrogated sample

#### Figure 3

*Time-Dependent Counts Recorded by <sup>3</sup>He Detectors in Delayed Neutron Counter* 

## **Deuterium-Deuterium Neutron Generator**



### Figure 4

3-D Rendering of Deuterium-Deuterium Neutron Generator from Adelphi Technology, Inc. (Chen, 2016 [2]) A **100 kV** Deuterium ion beam is incident on titanium target, causing D(d,n)<sup>3</sup>He reaction

Nominal Neutron Emission Rate =  $10^9 \text{ n s}^{-1}$ 

Irradiation Time  $(t_b) = 60$  s Delay Period  $(t_d) = 10^{-3}$  s Counting Period  $(t_c) = 180$  s

Delayed neutron emission from fissile samples are tabulated.

This is a theoretical scenario that is used to establish the **minimum detectable mass** of fissile isotopes in an interrogated sample.

MCNP6 is needed to simulate the irradiation of fissile samples using an *anisotropic* neutron source.

Canadian Nuclear | Laboratoires Nucléaires Laboratories | Canadiens

### **Simulation of Time-Dependent Delayed Neutron Transport in MCNP6**

| Part 1 | SDEF <b>TME=D4</b><br>SI4 H 0 60E8<br>SP4 D 0 1       | A <i>uniform</i> number of neutrons will be <i>continuously</i> emitted from<br>the source from 0 s to 60 s<br><b>0</b> s = Neutron Source Swithced <b>On</b><br><b>60</b> s = Neutron Source Swithced <b>Off</b> |
|--------|-------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Part 2 | ACT DN=LIBRARY DNBIAS=10-                             | Model delayed neutron production using <b>data libraries</b> and<br>produce <b>10</b> delayed neutrons per delayed neutron emission event<br>(this <i>reduces</i> statistical uncertainty of tallies)             |
| Part 3 | <b>CUT:N 300E8</b> J J J J.                           | Begin neutron trasnport at 0 s<br>Terminate neutron transport at 300 s                                                                                                                                            |
| Part 4 | F1:N (81.1 81.2 81.3)<br>E1<br>T1 60.001E8 240.001E8. | Quantify the number of delayed neutrons emitted from a sample<br>as a function of time using time binning                                                                                                         |

### Figure 5

Cards in Input File to Model Time-Dependent Delayed Neutron Transport in MCNP6 (Andrews, 2015 [3])

## **Fissile Materials**





Density of each fissile material was varied to reflect their varying concentration in intercepted articles

**Figure 7** *Fissile Sample Density Variation* 

# Neutron Kinetic Energy Spectrum and <sup>235</sup>U FissionReaction DataNuclear Reaction Data for <sup>235</sup>U $E_{ave} = 1.80 \text{ MeV}$ <br/> $\phi_{tot} = 6.38 \times 10^5 \text{ n cm}^{-2} \text{ s}^{-1}$



• <sup>235</sup>U Microscopic Fission Cross Section (barns)

Fission Rate Density (fissions  $s^{-1}$  atom<sup>-1</sup>)

Neutron Kinetic Energy Spectrum Traversing Fissile Sample Placement Volume and <sup>235</sup>U Fission Reaction Data (ENDF/B-VII.1 Cross Section Obtained from ENDF Nuclear Data File Database [5])

# Neutron Kinetic Energy Spectrum and <sup>239</sup>Pu FissionReaction DataNuclear Reaction Data for <sup>239</sup>Pu $E_{ave} = 1.80 \text{ MeV}$ <br/> $\phi_{tot} = 6.38 \times 10^5 \text{ n cm}^{-2} \text{ s}^{-1}$



<sup>239</sup>Pu Microscopic Fission Cross Section (barns)Fission Rate Density (fissions s<sup>-1</sup> atom<sup>-1</sup>)

on Kinetic Energy Spectrum Traversing Fissile Sample Placement Volume and <sup>239</sup>Pu Fission Reaction Data (ENDF/B-VII.1 Cross Section Obtained from ENDF Nuclear Data File Database [5])

# Delayed Neutron Yield from Active Neutron Interrogation Irradiations using DD Neutron Generator



**Objective:** Determine, in *absolute* terms, the total number of delayed neutrons emitted from a fissile sample, as a function of mass, during the counting period







Elapsed Time Since Beginning of Counting Period (s)

### Figure 11

Time-Dependent Instantaneous Delayed Neutron Emission from Fissile Samples (at nominal density) Interrogated by DD Neutron Generator

Canadian Nuclear Laboratoires Nucléaires Canadiens



Fissile Sample Mass (g)

### Figure 12

Cumulative Number of Delayed Neutrons Emitted from Fissile Sample Up to 180 Seconds After DD Neutron Generator Termination (ENDF/B-VII.1 Cross Section Obtained from ENDF Nuclear Data File Database [5] and ENDF/B-VII.1 Delayed Neutron Yield Obtained from PENDL [6])



Fissile Sample Mass (g)

### Figure 13

Cumulative Number of Delayed Neutrons Emitted from Fissile Sample Up to 180 Seconds After DD Neutron Generator Termination for Fissile Sample Mass Ranging from 0 g to 20 g

## Minimum Fissile Material Mass for DD Interrogation Irradiations

Minimum Mass = mass of fissile material that causes count rate in delayed neutron counter to be *just* beyond background count rate

Average Count Rate=

Cumulative Absolute Number of Delayed Neutrons Y Emitted from Fissile Sample, → at lowest density, over Counting Period

Length of Counting Period (180s)

For **each** fissile material, the **minimum** count rate that can be registered occurs when the material is at its **lowest** density

Typically around **20**%

Overall Detection
 Efficiency of Delayed
 Neutron Counter

## Minimum Fissile Material Mass for DD Interrogation Irradiations

| <b>Fissile Material</b>    | Mass (g) | Average Count Rate (cps) |
|----------------------------|----------|--------------------------|
| Depleted Uranium           | 5.97     | 1.05                     |
| Natural Uranium            | 5.97     | 1.08                     |
| Low Enriched<br>Uranium    | 5.97     | 1.17                     |
| Highly Enriched<br>Uranium | 4.58     | 3.27                     |
| Fuel Grade<br>Plutonium    | 5.28     | 2.25                     |
| MOX                        | 6.28     | 1.06                     |

The *typical* background count rate for neutron detectors in the HPNG is < 1 cps.

This table suggests that the **minimum** mass of fissile material in an intercepted article must be on the order of **a few grams** in order to produce count rates <u>differentiable</u> from background.

### Table 1

Average Count Rates Recorded in Delayed Neutron Counter from Fissile Samples Interrogated by DD Neutron Generator

## **Conclusions and Future Work**



Canadian Nuclear | Laboratoires Nucléaires Laboratories | Canadiens

- This study used MCNP6 to explore the use of the DD neutron generator at CNL to perform active neutron interrogation of fissile samples
- It is determined that the **minimum mass of fissile material** in an intercepted article, interrogated by the DD neutron generator, needed to produce count rates in a delayed neutron counter that is differentiable from background must be on the order of **a few grams**
- Experimental active neutron interrogation irradiations using the DD neutron generator will take place in the near future
- This study is funded by the AECL Federal Nuclear Science and Technology Work Plan



## References

- [1] Amiel, S. (1962). Analytical Applications of Delayed Neutron Emission in Fissionable Elements. *Analytical Chemistry*, *34*(13), 1683 1692.
- [2] Chen, A. (2016). Personal Communication. Redwood City, California: Adelphi Technology, Inc.
- [3] Andrews, M. (2015). *Delayed Neutron & Gamma Measurements of Special Nuclear Materials, their Monte Carlo Simulations, and Applications – Doctoral Thesis.* Kingston, Ontario: Royal Military College of Canada.
- [4] Pacific Northwest National Laboratory. (2011). *Compendium of Material Composition Data for Radiation Transport Modeling*. Richland, Washington: PNNL.
- [5] International Atomic Energy Agency. (2017). *Evaluated Nuclear Data File (ENDF) Database*. Retrieved July 2017, from https://www-nds.iaea.org/exfor/endf.htm
- [6] Japan Charged-Particle Nuclear Reaction Data Group. (2014). *PENDL: Plotter for Evaluated Nuclear Data Libraries*. Retrieved July 2017, from http://www.jcprg.org/endf/

## Appendix: Analytical Count Rate Estimates

$$N_{dn} = \sum_{j=1}^{k} \sum_{i=1}^{n} \varphi \sigma_{f}^{(j)} \left( \frac{N_{A} w^{(j)} m}{M_{M}^{(j)}} \right) \left( \frac{a_{i}}{\lambda_{i}} \right) \left( 1 - e^{-\lambda_{i} t_{b}} \right) \left( e^{-\lambda_{i} t_{c,1}} - e^{-\lambda_{i} t_{c,2}} \right)$$

Number of delayed neutrons emitted from decay of all precusor groups produced from fission with j<sup>th</sup> fissile isotope in sample

Total number of delayed neutrons emitted due to fission with all fissile isotopes in sample

Adapted from Amiel, 1962 [1]



| Fissile Material        | MCNP6 Average<br>Count Rate<br>(cps) | Analytical Average<br>Count Rate<br>(cps) |
|-------------------------|--------------------------------------|-------------------------------------------|
| Depleted Uranium        | 1.05                                 | 1.28                                      |
| Natural Uranium         | 1.08                                 | 1.29                                      |
| Low Enriched Uranium    | 1.17                                 | 1.31                                      |
| Highly Enriched Uranium | 3.27                                 | 1.87                                      |
| Fuel Grade Plutonium    | 2.25                                 | 1.35                                      |
| MOX                     | 1.06                                 | 1.20                                      |

Table 2Comparison of Average Count Rates Predicted from MCNP6 and Analytical<br/>Technique for each Fissile Material

