

SPIRAL-2 FOR NEUTRON PRODUCTION

X. Ledoux and the NFS collaboration

Outline

□ The SPIRAL-2 facility

□ The Neutrons For Science Facility

□ SPIRAL-2

□ The Neutrons For Science facility

Main objectives:

- Increasing the RIB production by a factor 10 to 1000
- Extend the range of beams nuclei Z>40 A>80

Technique :

- Primary beam of high intensity to produce high neutron flux
- Neutron induced fission of 238U
- UCx target
- Post-Acceleration of secondary beam with the CIME cyclotron

Linear accelerator: p and d up to 5mA, HI up to 14,5 MeV/A

Goal for RIB : 5.1013 fissions/s

- 2,3 kg of ²³⁸Uranium in an Uranium Carbide target
- Neutron production : 40 MeV d + Carbon

Deuteron is more efficient than proton Neutron yield :

- increases with the projectile energy
- peaked at forward angle

Several converters can be used :

- Lithium : liquid target
- D2O : tritium production, radiolyse
- Be : Chemical toxicity
- C : High melting point

SPIRAL-2 phase 2 :

- High intensity deuteron beam I=5mA, E=40 MeV \rightarrow 200kW
- Carbon converter on rotating wheel

GANIL/SPIRAL 2 facility

œa NES DESIR 83 ACCELERATEUR Caenlamer GANIL EXISTANT 7 PRODUCTION SPIRAL-2: - Linear accelerator - Production building (conv + UCx target) - LINAC experimental areas: - NFS - S3 : (super separator spectrometer) study of superheavy nulcei - DESIR : Decay, Excitation and Storage of Radioactive Ion

SPIRAL 2 construction phases

Phase 1++ : RFQ Q/A = 1/7

Phase 2: Production building

AccApp'17, Quebec, July 31-August 04,2017

Not yet funded **Standby**

SPIRAL-2 phase 1 building

The Linear Accelerator

Total length: 65 m	(without HE lines)
--------------------	--------------------

Slow (LEBT) and Fast Chopper (MEBT) RFQ (1/1, 1/2, 1/3) & 3 re-bunchers

12 QWR beta 0.07 (12 cryomodules)

14 (+2) QWR beta 0.12 (7+1 cryomodules)

1.1 kW Helium Liquifier (4.5 K)

Room Temperature Quadrupoles

Solid State RF amplifiers (10 & 20 KW)

RFQ frequency F = 88MHz

	Q/A	I (mA)	Energy (Mev/u)	CW max beam Power (KW)
Protons	1/1	5	2 - 33	165
Deuterons	1/2	5	2 - 20	200
Ions	1/3	1	2 - 14.5	45
Ions (option)	1/6	1	2 - 8	48

Sources and LEBT and RFQ

ECRIS A/Q=3 First beam (230 μA Argon 9+) July 10, 2015

ECRIS A/Q=2 First beam (2mA H⁺) Dec. 19th, 2014 RFQ: First beam (H+) Dec 3rd, 2015

<u>RFQ Commissioning with beam :</u>
A/Q=1 (protons) with 5 mAe CW
A/Q=2 (⁴He²⁺) with 1,3 mAe CW
A/Q=2 (¹⁸Oft) with 600 wAc

• A/Q=3 (¹⁸O⁶⁺) with 600 µAe

The LINAC

High Energy Beam Line

□ SPIRAL-2

□ The Neutrons For Science facility

- Pulsed neutron beam
- Continuous spectrum : d + thick converter
- QMN spectra : p + thin converter
- Neutron energy range 1-40 MeV
- Measurements by activation method

Physics case

- Fundamental physics
- Astrophysics
- □ New generation of reactor
- Fusion technology
- Radioisotopes production for medical applications
- □ Biology (cells irradiation..)
- Development and characterization of new detectors
- □ Study of the single-event upsets

First PAC in 2016, 7 experiments accepted

- High average flux in the 1-40 MeV range
- Good energy resolution

NFS layout

NFS: The converter room

NFS: The TOF area

Continuous spectrum E_{max} = 40 MeV , <E> = 14 MeV

40 MeV d + Be at 50 µA

Rotating converter thick target C or B (8mm) P< 2 kW

Quasi-monoenergetic spectrum $E_n = up \text{ to } 31 \text{ MeV}$

p + Li (1mm) at 20 µA

AccApp'17, Quebec, July 31-August 04,2017

Conference (Mey)edoux@cea.fr

Requirement: differentiation of 2 neutrons with the ToF t and t+T

Take only one burst over N (f = F₀/N) - Single bunch selector

-
$$I = I_{max} / N$$
, with $I_{max} = 5mA$

L(m)	E _{th} (MeV)	T(μs)	Ν	I _{max} (μA)
5	0.1	1	100	50
30	0.1	6	600	8

Objective:

Select 1 bunch over N, N>100 $F_{NFS}=F_{linac}/N$ LINAG frequency = 88 MHz -> T=11ns

Single bunch selector:

- Middle energy beam line
- Magnet to deflect the beam to a beam dump
- -Travelling electric field to deviate one burst over N to the LINAG

Comparison with other Neutron TOF facilities

Measurement by activation method

1- Sample irradiation in the converter room

ion induced reactions

2- Transfer of sample to TOF room

Cross-section measurements by activation method Study of radioisotope production

- **19th Dec 2014 : First proton beam delivered by the source**
- **③** 3th Dec 2015 : First beam accelerated through the RFQ
- **9**th of June 2016 : NFS experiments **@ GANIL PAC**
- Next step : cooling of the LINAC
- Final authorization (deuteron beam + LINAG) expected by end of 2017
- Start of LINAC commissioning
- \odot NFS commissioning : \rightarrow as soon as the LINAG's beam is available
- First experiment : 2018 2019

SPIRAL-2:

- Phase 1 is built
- H⁺, 4 He²⁺ and ${}^{16}O^{8+}$ accelerated in the RFQ
- Proton and deuteron beams of the LINAC are well suited for neutron production

NFS:

- NFS will be a very powerful tool for physics
- White and quasi-monokinetic spectra in the 1-40 MeV range
- Neutron beams with high flux and good energy resolution
- Complementary to the existing n-tof facilities
- Measurements by activation reactions (n, p, d)