Design, Material Selection and Operational Feedback for the New Design of the High Energy Beam Dump in the CERN SPS AccApp' 17 – Quebec, Canada

P. Rios-Rodriguez, A. Perillo-Marcone, M. Calviani Sources, Targets and Interactions Group

Contents

- Introduction of the SPS beam dump (TIDVG)
- Previous SPS beam dumps
 - Design of TIDVG#3 (2014-2016)
 - Post-mortem inspection of TIDVG#3 (July 2017)
 - History of the SPS beam dumps
- Current SPS beam dump TIDVG#4
 - Design
 - Material selection
 - Assembly and installation
 - Operational feedback for TIDVG#4
- Conclusions

Introduction of the SPS beam dump

Previous SPS beam dump - Design of TIDVG#3 Operating during 2014-2016

31-July-2017

Post-mortem inspection of TIDVG#3

- Vacuum leak test remote inspection (July 2017)
 - Radioactive device: 50mSV/h contact
 - Leak testing was able to identify leak point
 - Vacuum leaks were present on both longitudinal welds around half way along the core

Courtesy of K. Kershaw

Post-mortem inspection of TIDVG#3

History of the SPS beam dump

Device	Modifications/Experience	Date	molten Al in TIDVG 2
TIDVG 1	Molten Al	2000-2004	13:35 08/07/2014
TIDVG 2	Molten Al	2006-2013	
TIDVG 3	Gr longer +200 mm Al shorter Vacuum leak in April 2016- NO SPARE! Justified by the fact that a new generation dump was required by 2019- 2020	2014-2016	PAUSE

After the vacuum leak in April 2016:

 New design → TIDVG#4 for 2017-2018 operation (previous design: extremely long manufacturing times)

Weak points of TIDVG1,2 and 3:

- High outgassing rates
- No proper bake-out possibilities after installation
- No internal instrumentation
- High uncertainty of cooling efficiency

Current SPS beam dump – TIDVG#4

Installation during EYETS 2017 (March)

- Limited time window:
 - Faster manufacturer, materials off-the-shell
 - Use of known technologies. No R&D

- T sensors on all the parts (18 in total)
- T sensors for the water +1 flow meter
- Copper core made of CuCrZr

Material selection for TIDVG#4

- General material requirements for the SPS beam dump design:
 - Good thermal and mechanical properties → high power to be dissipated and high stresses due to the beam impact
 - Materials available in needed quantities, sizes and easy to machine. Acceptable delivery times.
 - UHV compatibility
 - Avoid AI (molten in previous design)
 - Avoid any kind of welds

Component	CERN specifications	Additional treatments applied
Graphite	Homogeneity Isotropic properties Grade with low E and high tensile strength	Degreased Purified in Ar @ T>2000°C Vacuum fired @ 950°C at CERN
Tungsten alloy	Homogeneity	Degreased at CERN Vacuum fired @ 950°C at CERN
CuCrZr	Homogeneity 3D forged	Degreased at CERN
Tube for vacuum chamber	Homogeneity + small grain size 3D forged 316L as per CERN spec. Seamless	Degreased at CERN

Current SPS beam dump – TIDVG#4

Forging of SS vacuum chamber

SS vacuum chamber

Tungsten alloy

CuCrZr core

Current SPS beam dump – TIDVG#4

TIDVG#4 core being pulled into the vacuum chamber

Medium/high-Z absorber

TIDVG#4 core fully assembled and ready for insertion in the vacuum tube

Final leak detection (upstream/ water manifolds)

Current TIDVG#4- Installation

Installation during EYETS 2017 (March)

4 PT100 on the SS vacuum chamber 2 PT100 on the shielding

Sensors located in the water:

- 2 flow-switches
- 4 PT100 in the water
- I water flow sensor (water flow and outlet T)

Commissioning beams:

Beam Type	p GeV/c	Bunch Intensity	# Bunches	Total Intensity	Continuous beam dump	Average power (kW)
LHC	440	1.10*10 ¹¹	48	5.3*10 ¹²	2h30	9
LHC	440	1.25*10 ¹¹	72	9*10 ¹²	4h	16
LHC	440	1.10*10 ¹¹	144	1.6*10 ¹³	3h	27
LHC	440	1.10*10 ¹¹	288	3.2 *10 ¹³	1h30	55

- Dedicated commissioning beams have been requested in order to validate the performances of the dump (crosscheck with simulations) as well as to condition the graphite
- TIDVG4 is designed for continuous deposited power of ~60 kW continuously

Behavior under 48b beam

TIDV6.11892:TEMP_C1519_LD → TIDV6.11892:TEMP_C1519_RD → TIDV6.11892:TEMP_C1619_RU → TIDV6.11892:TEMP_CU3699_LD → TIDV6.11892:TEMP_CU3699_RD → TIDV6.11892:TEMP_GR749_RD → TIDV6.11892:TEMP_GR2915_LD
TIDV6.11892:TEMP_GR2915_RD → TIDV6.11892:TEMP_GR583_LD → TIDV6.11892:TEMP_GR583_RD → TIDV6.11892:TEMP_SS1000_D → TIDV6.11892:TEMP_SS1000_U → TIDV6.11892:TEMP_SS2500_U
TIDV6.11892:TEMP_W4100_LD → TIDV6.11892:TEMP_W4100_RD

Good agreement (within ~25%)

Conclusions

- TIDVG#4 successfully installed and operational according to the project schedule
- Good vacuum performance with a fast conditioning observed
- Good thermal performance (tested for high power beams)
- Longitudinal electron beam welds along the core were identified as the source of the TIDVG#3 leak and must be avoided for future designs (using a seamless vacuum chamber)
- Lessons learnt for TIDVG#5 design (installation in 2020)

Thank you for your attention.

Do you have any questions?

Acknowledgements: J. A. Briz, K. Cornelis, R. Esposito, S. Gilardoni, B. Goddard, J.L. Grenard, D. Grenier, M. Grieco, J. Humbert, V. Kain, F. Leaux, S. De Man, C. Pasquino, J. R. Poujol, S. Sgobba, D. Steyaert, F. M. Velotti, V. Vlachoudis

Future SPS beam dump (TIDVG#5)

Future SPS beam dump: Prototypes

Hiping cuprous materials around SS pipes (Fraunhofer): The contact between the tubes is made by diffusion bonding, like welded. Perfect contact.

Thermomechanical simulations

Beam Type	p GeV/c	l p⁺/bunch	Bunches	Total I p+	Cycle length s	Time of continuou s beam
FT (achieved)	400	1.40*10 ¹⁰	4200 (5 ns)	5.88*10 ¹³	70.0	-
LHC (25 ns)	450	1.50*10 ¹¹	288 (25 ns)	4.32*10 ¹³	40.8	-

Maximum power deposited on the dump~76kW

CuCrZr absorbing part sees the peak of energy deposition

Thermo-mechanical analysi

Thermo-mechanical analysis

Thermo-mechanical analysis

Thermo-mechanical analysi

Maximum temperatures TIDVG#4

	Maximum Temperatures (°C) after steady-state of LHC
Graphite blocks	469
Copper jacket	330
CuCrZr absorbing block	294
Inermet block	170

