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Outline

o High power targets: scope and challenges
0 Research focus of the RaDIATE collaboration
o0 Ongoing and future R&D activities of RaDIATE

O Summary
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High Power Targetry Challenges

o0 Major accelerator facilities have recently been limited in beam power not by their
accelerators, but by their target facilities (SNS, NuMI/MINOS)

o0 Even greater challenges are present for future high power and high intensity
target facilities

o To maximize the benefit of high power accelerators (physics/$), challenges must
be addressed in time to provide critical input to multi-MW target facility designs
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High Power Targetry Scope

o«
> »"’ \

3

R&D needed to support:

o Targets o0 Collimators (eg. 100 TeV pp collimators)
o Solid, Liquid, Rotating, Rastered
o Facility requirements

0 Other production devices o Remote handling
o0 Collection optics (horns, solenoids) o Shielding and Radiation Transport
0 Monitors & Instrumentation o Air Handling
o Beam windows o Cooling System
o Absorbers
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High Power/Intensity Targetry Challenges

> Heat removal Thermal shock

Subjects of the
RaDIATE Collaboration

Radiation damage

Storage and disposal
At the Proton Accelerators for

Science and Innovation Workshop
(PASI 2012), workshop participants
from a range of high power

& accelerator facilities identified
RaDIATE ele
N radiation damage and thermal
Radiation Damage In Accelerator Target Environments ShOCk as the r_nOSt .CrOSS'CUtt”ﬁIg
challenges facing high power target

facilities
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Thermal Shock (Stress Waves)

Example: T2K beam window PED 1 atm, is applied on the
: I , ",__\\ concave side
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Material response dependent on:

0 Specific heat (temperature jump) o Dynamic stress waves may result in

o0 Coefficient of thermal expansion (induced strain) plastic deformation, cracking, and fatigue
0 Modulus of elasticity (associated stress)

o Flow stress behavior (plastic deformation)

o Strength limits (yield, fatigue, fracture toughness)

Heavy dependence on material properties, but:
material properties dependent upon Radiation Damage
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Radiation Damage Disorders
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A Frenkel pair consists of a vacancy and an interstitial atom.
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Radiation Damage Effects

Displacements in crystal lattice

(expressed as Displacement Per Atom, DPA)

o Embrittlement

Creep

Swelling

Fracture toughness reduction

Thermal/electrical conductivity reduction

Coefficient of thermal expansion

Modulus of Elasticity

Accelerated corrosion

Transmutation products

o He, H gas production can cause void

formation and embrittlement
(appm/DPA)

O O0OO0OO0OO0O0O0OO0o

Very dependent upon material and
irradiation conditions (eg. temperature,
dose rate)

D.J. Porter and F.A. Garner, J. Nuclear
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Neutrino HPT R&D Materials Exploratory Map
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R a DI AT E

Collaboration

Radiation Damage In Accelerator Target Environments

radiate.fnal.gov
Broad aims are threefold:

= to generate new and useful materials data for application within the accelerator and
fission/fusion communities

= to recruit and develop new scientific and engineering experts who can cross the
boundaries between these communities

= to initiate and coordinate a continuing synergy between research in these
communities, benefitting both proton accelerator applications in science and
industry and carbon-free energy technologies

. UNIVERSITY OF

# Fermilat Currently adding CERN and J-PARC to the MOU

v

Argonne
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Science & Technology
@ Facilities Council
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HE proton irradiations to explore candidate target/window
materials
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o Diffusion assisted effects are increased
(swelling from He bubble formation,
creep)

Increased oxidation rate
Degraded thermal shock resistance

O O
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HE proton irradiations to explore candidate target/window
materials

BNL BLIP Irradiation 2 (2017-2018)

o Phase 1 completed, Phase 2 to start in early 2018
o Total of 8-week irradiation
o Includes various grades of different materials:
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Examination of irradiated Be beam window indicates
fracture toughness changes under irradiation

HuMI beam window expeniments

NuMI Be window (Kuksenko, Oxford)

o PIE of Be window exposed to 1.57e21
protons
o Advanced microscopy techniques ongoing

o Limatches MARS predictions and remains e
homogeneously distributed at ~50 °C 0.47 DPA 0.24 DPA
o Crack morphology changes at higher dose - | s
o Transgranular to grain boundary 2000 idpe s
fracture 1800 ~=-H, appm (7 yearls)) o

1600 —s—He, appm (7 year(s))
. —o—Li, appm (7 year(s}) 035
Recent and future work with Be (2017) a0 S werii
€ 120

o0 Micro-mechanical testing
0 Micro-cantilever

o Nano-indentation 400

o Preliminary results indicate significant hardening 200

and increase in effective elastic modulus 0
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lon implantation of Be indicates significant hardening at

low DPA

He implantation at Surrey/Oxford 5
(Kuksenko, Oxford)

8

0 2 MeV He+ ions: 7.5 um penetration & ’
depth £

o Dose: upto 0.1 DPA g °®
o Temperature: 50 °C and 200 °C ¢
o Nano-indentation shows significant R
hardening at 0.1 DPA and 50 °C :

1

Future work with He in Be (2017-2018)

0 Micro-cantilever testing
o0 Higher dose and temperature irradiations
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Radiation-induced swelling a possible cause of failure of

NuMI NT-02 graphite target

NT-02 graphite target autopsy
(FNAL, PNNL)

0]

0]
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Graphite fin exposed to 8e21 p/cm?

Evidence of bulk swelling from
micrometer measurements of fins
o More swelling in US fin locations
o More swelling in fractured fins

Evidence of fracture during operation
o Symmetric fracture structure
o Limited impurity transport into whole
fins relative to fractured fins

Evidence of limited radiation damage
and material evolution
o Surface discoloration appears to be
mostly solder and flux material
o Crystal structure and porosity
consistent with as-fabricated
conditions

. Taken from fracture surface at the center where the beam was t

. Lamella has mixed regions of what appear to be amorphous (yellow insert
diffraction pattern) and nanocrystalline microstructure (red square)

L

argete

. Mrozowski cracks at the interfaces between these two regions
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Dynamic thermo-mechanical simulations of Be validated by
In-beam thermal shock experiments

Thermal shock test at CERN’s HiRadMat o\ it
(FNAL, RAL, CERN, Oxford) "
0 All 4 Be grades showed less plastic deformation s o AL e
than predicted | b
0 S200FH generally showed least plastic e
deformation \. _ 2000 0.75 mm discs
o Glassy carbon windows survived beam o NE AR P i 50 !
o0 Multiple pulses showed diminishing ratcheting in “m=®=e ke 1o . ||| I
plastic deformation - 5 I I
o0 Ongoing data analysis and validation of Johnson- S 500
Cook strength model validation - JC model 5
recently developed at SwRI Array 1 Array 3 Array 4
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Future work (2018) at HiRadMat
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o Testing of novel materials (nano-fiber mats) 1000 |
0 Test resonance effects on beam windows 3 oo oA
o Higher proton beam intensity g o /‘\ !

400 -
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Need for low energy irradiation studies to explore radiation
damage effects at high doses

High energy, high fluence, large volume proton irradiations are expensive and time consuming

o Long irradiation beam times required to achieve high dose (months)
o PIE on highly activated specimens is challenging

Low energy, small volume ion irradiations are inexpensive and can achieve high DPA rate

o Low to zero activation (PIE in ‘normal’ lab areas)

o Greatly accelerated damage rates (several DPASs in hours)

o However
o Very shallow penetration depths (0.5 — 100 um) and irradiation volume
o Little gas production (transmutation) in specimens

Promising Solutions:
o Micro-mechanics: coupled with advanced microscopy techniques can enable evaluation of critical

properties
o Simultaneous implantation of He and H ions (triple-beam irradiation) to mimic gas production

Still need HE proton irradiations to correlate and validate LE irradiation studies
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Neutrino HPT R&D Materials Exploratory Map

18

HiRadMat
1.0E+16 Beam Test — 2
//ﬁ/ (planned)
¥ [FiRadwat [ [

— Beam Test - 1
3
= L OE+15 LBNF-DUNE - 2
o & NuMI-MINOS Target A <e—
E NT-02 (damaged) \
&)
rol NuMI Be Beam
~ Window
P
= 106114 // NUMI- NOvA Target
S . TA-01 (in service)
% T2K First Target LBNF-DUNE - 1
S
g . .| BLIP
) 1.0E+13 | Irradiation - 1
— BLIP /
g Irradiation — 2
5 (2017/2018) lon Irradiation Service
=
— (pla@ i Study

1.0E+12 : I /| o . A Future

1.0E+20 1.0E+21 1.0E+22 1.0E+23

Radiation Damage Severity

(damage equivalent fluence, p/cm?)
£& Fermilab
9/27/2017 K. Ammigan | Status and Update of the RaDIATE Collaboration R&D Program | AccApp’17



Summary

0 Beam intercepting devices (targets, windows, collimators, absorbers/dumps) in
high power accelerators require stable/safe operation under challenging conditions
o Current accelerator facilities limited in beam power due to target survivability issues
o Future multi-MW accelerator upgrades/facilities pose even greater challenges

o0 Beam intercepting devices will experience extreme operating conditions
0 Increased rate of lattice displacements and transmutation gas production
o Larger dynamic thermal stresses due to pulsed beam nature

o0 R&D activities by the global accelerator targets community under the aegis of

RaDIATE is on-going to help meet future challenges
o Material radiation damage studies with high-energy protons and low-energy ions
o In-beam thermal shock tests to evaluate response of both non-irradiated and irradiated
materials
o0 Bring together both challenges of thermal shock and radiation damage into single
experiments
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Thank you for your attention

radiate.fnal.gov
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