Fermilab **ENERGY** Office of Science

Status and Update of the RaDIATE Collaboration R&D Program

Kavin Ammigan (Fermilab) on behalf of the RaDIATE Collaboration 13th International Topical Meeting on Nuclear Application of Accelerators 3rd August 2017

Outline

• High power targets: scope and challenges

- Research focus of the RaDIATE collaboration
- Ongoing and future R&D activities of RaDIATE
- o Summary

High Power Targetry Challenges

- Major accelerator facilities have recently been limited in beam power not by their accelerators, but by their target facilities (SNS, NuMI/MINOS)
- Even greater challenges are present for future high power and high intensity target facilities
- To maximize the benefit of high power accelerators (physics/\$), challenges must be addressed in time to provide critical input to multi-MW target facility designs

High Power Targetry Scope

R&D needed to support:

- o Targets
 - o Solid, Liquid, Rotating, Rastered
- o Other production devices
 - Collection optics (horns, solenoids)
 - o Monitors & Instrumentation
 - o Beam windows
 - o Absorbers

- Collimators (eg. 100 TeV pp collimators)
- o Facility requirements
 - o Remote handling
 - o Shielding and Radiation Transport

Fermilab

- o Air Handling
- o Cooling System

High Power/Intensity Targetry Challenges

Thermal Shock (Stress Waves)

Example: T2K beam window

Material response dependent on:

- Specific heat (temperature jump) Ο
- Coefficient of thermal expansion (induced strain) Ο
- Modulus of elasticity (associated stress) \cap
- Flow stress behavior (plastic deformation) Ο
- Strength limits (yield, fatigue, fracture toughness) Ο

Heavy dependence on material properties, but: material properties dependent upon Radiation Damage

Dynamic stress waves may result in Ο plastic deformation, cracking, and fatigue

🛟 Fermilab

6

Radiation Damage Disorders Microstructure

From D. Filges, F. Goldenbaum, in:, Handb. Spallation Res., Wiley-VCH Verlag GmbH & Co. KGaA, 2010, pp. 1–61.

Microstructural response:

- Creation of transmutation products
- Atomic displacements (cascades)
 - Displacements Per Atom (DPA) = Average number of stable interstitial/vacancy pairs created

Radiation Damage Effects

Displacements in crystal lattice

(expressed as Displacement Per Atom, DPA)

- Embrittlement \cap
- Creep 0
- Swelling Ο
- Fracture toughness reduction 0
- Thermal/electrical conductivity reduction Ο
- Coefficient of thermal expansion Ο
- Modulus of Elasticity 0
- Accelerated corrosion \cap
- Transmutation products 0
 - He, H gas production can cause void 0 formation and embrittlement (appm/DPA)

Very dependent upon material and irradiation conditions (eg. temperature, dose rate)

Unirradiated

▲ 0.01 dpa, 200°C

@0.82 dpa, 400°C

🛟 Fermilab

3.2 DPA

23.3 DPA

N. Maruyama and M. Harayama, "Neutron irradiation effect on ... graphite materials," Journal of Nuclear Materials, 195, 44-50 (1992)

Temperature (C)

120

Thermal

Neutrino HPT R&D Materials Exploratory Map

9/27/2017 K. Ammigan | Status and Update of the RaDIATE Collaboration R&D Program | AccApp'17

9

radiate.fnal.gov

Broad aims are threefold:

- to generate new and useful materials data for application within the accelerator and fission/fusion communities
- to recruit and develop new scientific and engineering experts who can cross the boundaries between these communities
- to initiate and coordinate a continuing synergy between research in these communities, benefitting both proton accelerator applications in science and industry and carbon-free energy technologies

10 9/27/2017 K. Ammigan | Status and Update of the RaDIATE Collaboration R&D Program | AccApp'17

HE proton irradiations to explore candidate target/window materials

BNL BLIP Irradiation 1 (2010)

- o 181 MeV proton irradiation
- 4 graphite grades exposed to 6e20 p/cm²
- Changes in material properties (30-50%)
- Annealing (> 150 °C) achieves partial recovery
- Confirmed choice of POCO ZXF-5Q (least change in critical properties)
- Irradiation at higher temperatures may be beneficial. However,
 - Diffusion assisted effects are increased (swelling from He bubble formation, creep)
 - o Increased oxidation rate
 - o Degraded thermal shock resistance

HE proton irradiations to explore candidate target/window materials

BNL BLIP Irradiation 2 (2017-2018)

- Phase 1 completed, Phase 2 to start in early 2018
- o Total of 8-week irradiation
- o Includes various grades of different materials:
 - o Be & C (FNAL)
 - Ti & Si (FRIB, KEK, FNAL, U. of Oxford, STFC)
 - o AI (ESS)
 - o Ir, TZM, CuCrZr (CERN)
- Most PIE work will be performed at PNNL

Tensile & Microstructural specimens

Bend specimens

Fatigue specimens

Mesoscale fatigue specimens

HiRadMat specimens

Examination of irradiated Be beam window indicates fracture toughness changes under irradiation

NuMI Be window (Kuksenko, Oxford)

- PIE of Be window exposed to 1.57e21 protons
- o Advanced microscopy techniques ongoing
- Li matches MARS predictions and remains homogeneously distributed at ~50 °C
- Crack morphology changes at higher dose
 - Transgranular to grain boundary fracture

Recent and future work with Be (2017)

- o Micro-mechanical testing
 - o Micro-cantilever
 - o Nano-indentation
- Preliminary results indicate significant hardening and increase in effective elastic modulus

Ion implantation of Be indicates significant hardening at low DPA

He implantation at Surrey/Oxford

(Kuksenko, Oxford)

- 2 MeV He+ ions: 7.5 µm penetration depth
- Dose: up to 0.1 DPA
- Temperature: 50 °C and 200 °C
- Nano-indentation shows significant hardening at 0.1 DPA and 50 °C

Future work with He in Be (2017-2018)

- o Micro-cantilever testing
- Higher dose and temperature irradiations

🛟 Fermilab

14 9/27/2017 K. Ammigan | Status and Update of the RaDIATE Collaboration R&D Program | AccApp'17

Radiation-induced swelling a possible cause of failure of NuMI NT-02 graphite target

NT-02 graphite target autopsy (FNAL, PNNL)

- Graphite fin exposed to 8e21 p/cm²
- Evidence of bulk swelling from micrometer measurements of fins
 - More swelling in US fin locations
 - More swelling in fractured fins

• Evidence of fracture during operation

- o Symmetric fracture structure
- Limited impurity transport into whole fins relative to fractured fins

• Evidence of limited radiation damage and material evolution

- Surface discoloration appears to be mostly solder and flux material
- Crystal structure and porosity consistent with as-fabricated conditions

- Taken from fracture surface at the center where the beam was targeted
- Lamella has mixed regions of what appear to be amorphous (yellow insert diffraction pattern) and nanocrystalline microstructure (red square)
- Mrozowski cracks at the interfaces between these two regions

Dynamic thermo-mechanical simulations of Be validated by in-beam thermal shock experiments

Thermal shock test at CERN's HiRadMat

(FNAL, RAL, CERN, Oxford)

- All 4 Be grades showed less plastic deformation than predicted
- S200FH generally showed least plastic deformation
- o Glassy carbon windows survived beam
- Multiple pulses showed diminishing ratcheting in plastic deformation
- Ongoing data analysis and validation of Johnson-Cook strength model validation - JC model
 recently developed at SwRI

辈 Fermilab

Future work (2018) at HiRadMat

- Thermal shock testing of proton-irradiated materials from BLIP
 - o Beryllium, Graphite, Glassy Carbon, Titanium
- Testing of novel materials (nano-fiber mats)
- o Test resonance effects on beam windows
- o Higher proton beam intensity
- Development of JC damage model for Be

Need for low energy irradiation studies to explore radiation damage effects at high doses

High energy, high fluence, large volume proton irradiations are expensive and time consuming

- Long irradiation beam times required to achieve high dose (months)
- o PIE on highly activated specimens is challenging

Low energy, small volume ion irradiations are inexpensive and can achieve high DPA rate

- Low to zero activation (PIE in 'normal' lab areas)
- Greatly accelerated damage rates (several DPAs in hours)
- However
 - $\circ~$ Very shallow penetration depths (0.5 100 $\mu m)$ and irradiation volume
 - Little gas production (transmutation) in specimens

Promising Solutions:

- Micro-mechanics: coupled with advanced microscopy techniques can enable evaluation of critical properties
- Simultaneous implantation of He and H ions (triple-beam irradiation) to mimic gas production

Still need HE proton irradiations to correlate and validate LE irradiation studies

Neutrino HPT R&D Materials Exploratory Map HiRadMat Beam Test - 2 1.0E+16 (planned) **HiRadMat** Beam Test - 1 Thermal Shock Severity (p/cm²/pulse) LBNF-DUNE - 2 1.0E+15 NuMI-MINOS Target NT-02 (damaged) NuMI Be Beam Window NuMI-NOvA Target 1.0E+14 TA-01 (in service) **T2K First Target** LBNF-DUNE - 1 **BLIP** Irradiation - 1 1.0E+13 **BLIP** Irradiation – 2 (2017/2018)Ion Irradiation Service (planned) Study ▲ Future 1.0E+12 1.0E+20 1.0E+21 1.0E+22 1.0E+23 Radiation Damage Severity (damage equivalent fluence, p/cm²) Fermilab

Summary

- Beam intercepting devices (targets, windows, collimators, absorbers/dumps) in high power accelerators require stable/safe operation under challenging conditions
 - Current accelerator facilities limited in beam power due to target survivability issues
 - o Future multi-MW accelerator upgrades/facilities pose even greater challenges
- Beam intercepting devices will experience extreme operating conditions
 - o Increased rate of lattice displacements and transmutation gas production
 - o Larger dynamic thermal stresses due to pulsed beam nature
- R&D activities by the global accelerator targets community under the aegis of RaDIATE is on-going to help meet future challenges
 - o Material radiation damage studies with high-energy protons and low-energy ions
 - In-beam thermal shock tests to evaluate response of both non-irradiated and irradiated materials
 - Bring together both challenges of thermal shock and radiation damage into single experiments

🚰 Fermilab

Thank you for your attention

radiate.fnal.gov

20 9/27/2017 K. Ammigan | Status and Update of the RaDIATE Collaboration R&D Program | AccApp'17

References

- [1] P. Hurh, C. Densham, J. Thomas, and R. Tschirhart, "High Power Targets Working Group Summary Report," presented at PASI 2012, Batavia, USA, Jan. 2012, unpublished.
- [2] N. Simos *et al.*, "Long Baseline Neutrino Experiment Target Material Radiation Damage Studies Using Energetic Protons of the Brookhaven Linear Isotope Production (BLIP) Facility", arXiv:1408.6429 [physics.acc-ph] FERMILAB-CONF-12-639-AD-APC, 2012.
- [3] N. Simos *et al.*, "Proton Irradiated Graphite Grades For a Long Baseline Neutrino Facility Experiment", Phys. Rev. Accel. Beams, to be published.
- [4] K. Ammigan *et al.*, "The RaDIATE high-energy proton materials irradiation experiment at the Brookhaven Linac Isotope Producer facility," presented at IPAC'17, Copenhagen, Denmark, May. 2017, paper WEPVA138, this conference.
- [5] V. Kuksenko et al, "Irradiation effects in beryllium exposed to high energy protons of the NuMI neutrino source," Journal of Nuclear Materials, vol. 490, pp. 260-271, Jul. 2017.
- [6] N. Mokhov, "The MARS Code System User's Guide", Fermilab-FN-628, 1995.
- [7] V. Kuksenko, "Experimental Investigation of Irradiation Effects in Beryllium," presented at RaDIATE 2016 Collaboration Meeting, Richland, USA, Sept. 2016, unpublished.
- [8] I. Efthymiopoulos, C. Hessler, H. Gaillard, D. Grenier, M. Meddahi, P. Trilhe, A. Pardons, C. Theis, N. Charitonidis, S. Evrard, H. Vincke & M. Lazzaroni, "HiRadMat: A New Irradiation Facility for Material Testing at CERN", Presented at IPAC 2011, San Sebastien, Spain, Sep. 2011, paper TUPS058.
- [9] K. Ammigan *et al.*, "Experimental Results of Beryllium Exposed to Intense High Energy Proton Beam Pulses," presented at NAPAC'16, Chicago, USA, Oct. 2016, paper MOPOB14.
- [10] K. Ammigan *et al.*, "Post Irradiation Examination Results of the NT-02 Graphite Fins NuMI Target," presented at NAPAC'16, Chicago, USA, Oct. 2016, paper MOPOB13.

