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Motivation
• An extended period without beams in the Large Hadron Collider 

(LHC) at CERN is scheduled for 2024-2025. This stop in 
operations, known as Long Shutdown 3 (LS3), is required for the 
experiments, as well as the accelerator, to perform crucial 
consolidation and upgrade tasks.

• In particular, the ATLAS Inner Detector (ID) will be 
decommissioned and replaced by a new tracking system (ITk), 
allowing the experiment to collect 4000/fb.

• Given the location of the inner detector with respect to the beam 
pipe and the expected integrated luminosity up to LS3 of 300/fb, 
a detailed radiological assessment of the scheduled work is 
needed.
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Aim

• Consider the detector configuration changes 
with the toolkit SESAME:
o Various detector elements will be removed or displaced 

during LS, YETS or EYETS (Extended Year End Technical 
Stop) to facilitate the interventions.

o This variation of detector geometry strongly influences the 
results of the simulation and needs to be taken into 
account.
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• Study using the Monte-Carlo particle transport 
code FLUKA version 2011.2c.5 and DPMJET-III:
o The ambient dose equivalent rates in the ATLAS 

experimental cavern during future LS.
o Estimate the expected radiation levels at the ITk 

during the High Luminosity LHC shutdown periods.

1 µSv = 0.1 mrem



Method: SESAME
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 Simulating prompt radiation in the closed geometry, storing 
the nuclides produced on a file.

 Letting these nuclides decay in the open geometry after 
some transformations/displacements.



Method: SESAME
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Method: SESAME
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 Simulating prompt radiation in the closed geometry, storing 
the nuclides produced on a file.

 Letting these nuclides decay in the open geometry after 
some transformations/displacements
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SESAME prompt step
• The geometry corresponds to the operational closed scenario.
• The source is a 2×7 TeV colliding proton beam (half-crossing 

angle of 142.5 µrad). The total number of simulated proton 
collisions is 187 000.

• The magnetic field is switched on.
• The FLUKA physics parameters are the standard for activation 

studies:
o The EM shower is off cause it is not particularly relevant for creation of 

isotopes and it is very time consuming.
• The information of the nuclides is stored with the SESAME 

routines in a binary file.
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SESAME decay step
• The geometry is remodelled to match the standard opening scenario.
• The source consists of loading the information from the modified binary file with 

the nuclide information, where:
o The nuclides belonging to regions that are transformed, change their position 

accordingly.
o The nuclides from regions that are removed, are also removed.
o The nuclides created in air, are discarded as the air is continuously flushed with fresh 

air during shutdown periods.
• The magnetic field is turned off.
• The EM shower is now on.
• Usual particle thresholds:

o All particles thresholds set to 100 keV.
o Low energy neutrons in 260 groups from 0.01 meV to 20 MeV.
o EM shower cuts for transport and production of electrons: 50 keV, and gammas: 10 keV.
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SESAME decay step
• The decay of the nuclides is scaled according to the irradiation profile provided by the 

Technical Coordinator of ATLAS (ultimate scenario estimates, August 2016).
o Ion runs can be judged as cooling times due to their small impact in the activation.
o A 75% of peak luminosity levelling is considered up to LS3.
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o The proton-proton inelastic total cross 
section is of 75 mb up to LS1 and 80 mb 
afterwards.

o The irradiation is supposed to be delivered 
at the end of the proton run schedule, at the 
maximum luminosity (conservative 
scenario).

• The ambient dose equivalent is scored in 
the region of interest:
o 0 ≤ R ≤ 1500 (150 bins).
o 0 ≤ φ ≤ 2ϖ (1 bin).
o 0 ≤ Z ≤ 2500 (250 bins).



FLUKA 1-step
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 Some regions materials are set to vacuum for decay purposes, to 
simulate different contributions from the components that are 
displaced.

 Multiple runs: Sum up the scorings (after displacement).



FLUKA 1-step
• There is only one geometry: the closed scenario.
• The source is a 2×7 TeV colliding proton beam (half-crossing angle of 

142.5 µrad). The total number of simulated proton collisions is 25 000 
(6 times).

• One run per component (prompt and decay in a single step).
• The magnetic field is turned on in the prompt and off in the decay.
• The same physics cards than in the prompt step in the SESAME 

approach, but the EM shower is now on.
• Usual particle thresholds as from the decay step in the SESAME 

approach.
• The region of interest is extended to avoid artefacts in the 

superposition afterwards.
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Comparison: SESAME vs. FLUKA 1-step
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Comparison: SESAME vs. FLUKA 1-step
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Comparison: SESAME vs. FLUKA 1-step
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Comparison: SESAME vs. FLUKA 1-step
• General overestimation in 

FLUKA 1-step method for
open geometries.
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• Shielding effect in SESAME 
scheme for open geometries.

LS4 (28 days)



Comparison: SESAME vs. FLUKA 1-step
• General overestimation in 

FLUKA 1-step method for
open geometries.

August 1st, 2017 18/29

• Shielding effect in SESAME 
scheme for open geometries.

LS4 (56 days)



Comparison: SESAME vs. FLUKA 1-step
• General overestimation in 

FLUKA 1-step method for
open geometries.
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• Shielding effect in SESAME 
scheme for open geometries.

LS4 (181 days)



Results
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• 28 days of cooling time after 
the proton run:
o At a radial distance of 

around 1-2 m from the 
beam line, it can be 
considered as controlled 
radiation area.

o The remaining cavern is 
considered as supervised 
radiation area.

o In order to mitigate the 
radioactive risk, and also 
to address any operational 
problems encountered 
near the beam pipe, a 
temporary shielding can 
also be placed.

2016 (28 days)



Results
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Results
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Results
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• 28 days of cooling time after 
the proton run:
o At a radial distance of 

around 1-2 m from the 
beam line, it can be 
considered as controlled 
radiation area.

o The remaining cavern is 
considered as supervised 
radiation area.

o In order to mitigate the 
radioactive risk, and also 
to address any operational 
problems encountered 
near the beam pipe, a 
temporary shielding can 
also be placed.

LS6 (28 days)



Benchmark
• Comparison of measurements taken in 2016 YETS.
• Good agreement but the underestimation might be due to some 

material missing in the FLUKA geometry description (ID and flanges).
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Conclusions
• The SESAME approach is better as:

o It still relies on FLUKA, it only provides tools to run the simulation.
o It is not straightforward to transform and combine the scorings in 

case of rotations in the FLUKA 1-step, and also precision error can 
arise because of the displacements and the bin width mismatch.

o It avoids the repetition of the nuclide production, that has to be 
done only once per closed geometry, and is very time consuming.

o The results are validated according to some measurements taken 
in 2016 YETS.

o The radiation field is more realistically described in the open 
scenario. Shielding regions can easily be added and the 
replacement of components can be considered faster.
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