

How nuclear data collected for medical radionuclides production at ARRONAX could constrain the TALYS code

Charlotte DUCHEMIN^{1,*}, Arnaud GUERTIN¹, Férid HADDAD^{1,2}, Nathalie MICHEL² and Vincent MÉTIVIER¹

^{1.} Laboratoire SUBATECH, Ecole des Mines de Nantes CNRS/IN2P3, Université de Nantes, 4 Rue Alfred Kastler, 44307 Nantes cedex 3, France.

^{2.} GIP ARRONAX, 1 rue Aronnax, 44817 Saint Herblain, France.

* now at CERN, HSE-RP-SP, 1211 Geneva 23, Switzerland

AccApp'17 13th International Topical Meeting on the Nuclear Applications of Accelerators

Radionuclide \longrightarrow Diagnosis \rightarrow to reveale/localize the disease functional imaging (organs' activity, cells metabolism) Therapy \rightarrow to treat the disease α particle/electron emitters

Radionuclide \longrightarrow Diagnosis \rightarrow to reveale/localize the disease functional imaging (organs' activity, cells metabolism) Therapy \rightarrow to treat the disease α particle/electron emitters

. lodine: chemical element directly catched by the thyroid I-131 for therapy

Radionuclide \longrightarrow Diagnosis \rightarrow to reveale/localize the disease functional imaging (organs' activity, cells metabolism) Therapy \rightarrow to treat the disease α particle/electron emitters

. Iodine: chemical element directly catched by the thyroid I-131 for therapy

. But most of the radionuclides have to be guided to the target cells (cancer cells for instance) F-18 linked to a glucose analogue for PET imaging

Radionuclide \longrightarrow Diagnosis \rightarrow to reveale/localize the disease functional imaging (organs' activity, cells metabolism) Therapy \rightarrow to treat the disease α particle/electron emitters

. Iodine: chemical element directly catched by the thyroid I-131 for therapy

. But most of the radionuclides have to be guided to the target cells (cancer cells for instance) F-18 linked to a glucose analogue for PET imaging

. Since 2010: collaboration between the Subatech laboratory & ARRONAX in Nantes in France

. Since 2010: collaboration between the Subatech laboratory & ARRONAX in Nantes in France

SUBATECH

Research lab

- . Particle physics
- . Nuclear physics
- . Nuclear chemistry

. Since 2010: collaboration between the Subatech laboratory & ARRONAX in Nantes in France

SUBATECH

Research lab

- . Particle physics
- . Nuclear physics
- . Nuclear chemistry

Accelerator for the Research in Radiochemistry and in Oncology at Nantes Atlantique X

C70 Cyclotron build by IBA:

- 4 sectors isochron cyclotron
- 2 extraction methods: stripper or electrostatic deflector

Extracted	Energy (MeV)	Max. current (µA)
H+	30 – 70	2 x 375
D+	15 – 35	2 x 50
He ²⁺	68	70
HH+	17	50

- 6 beam lines

one vault devoted to experiments

2. Production process

Usual production routes

- → Accelerators : low energy protons F-18
- → Reactors : neutrons

I-131, Mo-99

The production of a limited number of radionuclides can be assessed through these production routes

Study of alternative production routes for the production of innovative radionuclides

- \rightarrow High energy protons
- → Deuterons
- $\rightarrow \alpha$ particles
- \rightarrow Fission process

2. Particle flux

Study of alternative production routes for the production of innovative radionuclides

- \rightarrow High energy protons
- → Deuterons
- $\rightarrow \alpha$ particles
- \rightarrow Fission process

. The **production cross section** is not known or only few experimental data are available

→ Needed to determine the **best production pathway** and the **best irradiation conditions**

3. Production cross section determination

Few µm thick

 \rightarrow Low energy loss of the projectile through the target

 \rightarrow Low energy loss of the projectile through the target

 $\rightarrow \sigma$ slightly changes on this small energy range

 \rightarrow Low energy loss of the projectile through the target

 $\rightarrow \sigma$ slightly changes on this small energy range

 \rightarrow for a mean energy value of the projectile crossing the target

= One experimental σ value

- \rightarrow Low energy loss of the projectile through the target
- $\rightarrow \sigma$ slightly changes on this small energy range
- \rightarrow for a mean energy value of the projectile crossing the target

One experimental σ value

Act =
$$\sigma$$
 (E). Φ . χ . $\frac{N_A \cdot \rho \cdot ef}{A}$. (1-exp(- λ .t_{irr}))

Produced radionuclide

Target

Irradiation conditions

→ Target: to produce the radionuclide for which the cross section will be determined

→ Target: to produce the radionuclide for which the cross section will be determined

 \rightarrow Degrader: to decrease the beam energy

→ Target: to produce the radionuclide for which the cross section will be determined

 \rightarrow Degrader: to decrease the beam energy

!! Particle flux measured at the end of the stack

- → Target: to produce the radionuclide for which the cross section will be determined
- → Monitor: to produce a radionuclide with a cross section value of **reference**
- \rightarrow Degrader: to decrease the beam energy

Monitor reactions

- . Defined by the International Atomic Energy Agency (IAEA)
 - Coordinated Research Project F41029
 - « Nuclear Data for Charged-particle Monitor Reactions and Medical Isotope Production »

Monitor reactions

. Defined by the International Atomic Energy Agency (IAEA)

Coordinated Research Project F41029

« Nuclear Data for Charged-particle Monitor Reactions and Medical Isotope Production »

- \rightarrow Analysis of the σ exp. data and related articles
- \rightarrow Adjustment of the selected data
- \rightarrow Determination of recommended/reference values

1. Motivation 2. Production process 3. σ determination 4. Exp. Set-up 5. RN of interest 6. TALYS 7. Results & discussion 8. Conclusions

Act = σ (E). Φ . χ . $\frac{N_A \cdot \rho \cdot ef}{A}$. (1- exp(- λ .t_{irr}))

Produced radionuclide

— Target

Irradiation conditions

1. Motivation 2. Production process 3. σ determination 4. Exp. Set-up 5. RN of interest 6. TALYS 7. Results & discussion 8. Conclusions

$$Act = \sigma (E). \Phi . \chi . \frac{N_{A}. \rho. ef}{A} . (1 - exp(-\lambda.t_{irr}))$$

$$\Phi = \frac{Act . A}{\sigma (E). \chi . N_{A}. \rho . ef . (1 - exp(-\lambda.t_{irr}))}$$

$$\Phi' = \frac{Act' . A'}{\sigma'(E'). \chi'. N_{A}. \rho'. ef'. (1 - exp(-\lambda'.t_{irr}))}$$

$$Produced radionuclide$$

$$Target$$

$$Target$$

$$Target$$

1. Motivation 2. Production process 3. σ determination 4. Exp. Set-up 5. RN of interest 6. TALYS 7. Results & discussion 8. Conclusions

$$Act = \sigma (E). \Phi . \chi . \frac{N_{A}. \rho. ef}{A} . (1 - exp(-\lambda.t_{irr}))$$

$$\Phi = \frac{Act . A}{\sigma (E). \chi . N_{A}. \rho . ef . (1 - exp(-\lambda.t_{irr}))}$$

$$\Phi' = \frac{Act' . A'}{\sigma'(E'). \chi'. N_{A}. \rho'. ef'. (1 - exp(-\lambda'.t_{irr}))}$$

$$Produced radionuclide$$

$$Target$$

$$Target$$

$$Target$$

$$Target$$

Condition: $\Phi = \Phi'$

1. Motivation 2. Production process 3. σ determination 4. Exp. Set-up 5. RN of interest 6. TALYS 7. Results & discussion 8. Conclusions

Act =
$$\sigma$$
 (E). Φ , χ . $\frac{N_{A}$, ρ , ef
Act . A
Target = $\frac{Act . A}{\sigma$ (E). χ . N_{A} , ρ . ef . (1 - exp(- λ .t_{irr}))
 $\Phi' = \frac{Act' . A'}{\sigma'(E'). \chi'. N_{A}, \rho'. ef'. (1 - exp(- $\lambda'.t_{irr}))}$
Condition: $\Phi = \Phi'$
 $\sigma(E) = \varphi'(E')$. Act . A . χ' . $\rho'.ef'. (1 - exp(- $\lambda'.t_{irr}))$
Recommended cross section
values from the IAEA
We Market Market Market Market A Services$$

4. Experimental set-up

Alumina target under irradiation

1. Motivation 2. Production process 3. σ determination 4. Exp. Set-up 5. RN of interest 6. TALYS 7. Results & discussion 8. Conclusions

Alumina target under irradiation

5. Radionuclides of interest for nuclear medicine *Production cross section study*

Functional imaging/Diagnosis	Therapy
positron emitters e^+ $Sc-44 \longrightarrow Cf$ interest for PET $T_{1/2} = 3.97 h$ $+ \gamma (1.157 \text{ MeV})$ Of interest for the 3 γ imaging technique developed at the SUBATECH lab (Xenon group) Ca-44(d,2n)	electrons emitters e ⁻ Re-186g $\rightarrow \beta$ -, used in clinical trials $T_{1/2} = 3.72 d$ palliative therapy for painful metastases W-nat(d,xn) Tb-155 \rightarrow Auger e- / γ for imaging $T_{1/2} = 5.32 d$ Gd-nat(d,xn) Sn-117m \rightarrow Conversion e-, used in clinical trials $T_{1/2} = 13.60 d$ cardiovascular diseases Cd-116(α ,3n)
photon emitters γ Tc-99m \longrightarrow Widely used in functional imaging (SPECT) Tc-99m "crisis" Th-232(d,f) and Th-232(p,f)	$ α particles emitters $ $ Th-226 → High cell destruction power (4 part. α) $ $ T_{1/2} = 30.57 m $ Ac-225 → High cell destruction power (3 part. α) $ T_{1/2} = 10.0 d $ Ra-223 → Xofigo© radiopharmaceutical $ T_{1/2} = 11.44 d $ Th-232(d,x) and Th-232(p,x)

6. The TALYS code

Code for the simulation of nuclear reactions

Koning A.J. and Rochman D. Nucl. Data Sheets, 113, 2012

Code for the simulation of nuclear reactions

Projectiles: n, p, d, t, He-3, α particles

Energy: 1 keV to 1 GeV

Targets: Z = 3 to 110

Koning A.J. and Rochman D. Nucl. Data Sheets, 113, 2012

Code for the simulation of nuclear reactions

- . Includes several nuclear models to cover the main reaction mechanisms
- . Provides a description of all the reactions channels and observables

Koning A.J. and Rochman D. Nucl. Data Sheets, 113, 2012

Projectiles: n, p, d, t, He-3, α particles Energy: 1 keV to 1 GeV Targets: Z = 3 to 110 1. Motivation 2. Production process 3. σ determination 4. Exp. Set-up 5. RN of interest 6. TALYS 7. Results & discussion 8. Conclusions

Code for the simulation of nuclear reactions

- . Includes several nuclear models to cover the main reaction mechanisms
- . Provides a description of all the reactions channels and observables

Koning A.J. and Rochman D. Nucl. Data Sheets, 113, 2012

1. Motivation 2. Production process 3. σ determination 4. Exp. Set-up 5. RN of interest 6. TALYS 7. Results & discussion 8. Conclusions

Code for the simulation of nuclear reactions

- . Includes several nuclear models to cover the main reaction mechanisms
- . Provides a description of all the reactions channels and observables

Koning A.J. and Rochman D. Nucl. Data Sheets, 113, 2012

 \rightarrow Influence on the calculated production cross section values

Adapted from S. Benck, PhD thesis, 1999

Study with the TALYS code version 1.6

. The combination of models that best describes the whole set of available data for all projectiles, targets and incident energies defined by the TALYS authors ⇒TALYS 1.6 Default

Study with the TALYS code version 1.6

. The combination of models that best describes the whole set of available data for all projectiles, targets and incident energies defined by the TALYS authors ⇒TALYS 1.6 Default

. One combination of models that best describes our whole set of data for proton, deuteron, alpha particles as projectile (and literature data) has been defined during this study. ⇒TALYS 1.6 Adj.

Study with the TALYS code version 1.6

. The combination of models that best describes the whole set of available data for all projectiles, targets and incident energies defined by the TALYS authors

⇒TALYS 1.6 Default

. One combination of models that best describes our whole set of data for proton, deuteron, alpha particles as projectile (and literature data) has been defined during this study. ⇒TALYS 1.6 Adj.

Models	Projectile	Default	Adj.
Optical	р (1)	A.J. Koning and J.P. Delaroche (2003)	A.J. Koning and J.P. Delaroche (2003)
	d (5)	S. Watanabe (1958) 	Y. Han et al. (2006)
	α (5)	L. McFadden and G.R. Satchler (1966)	Demetriou et al. (2002)
Pre-equilibrium	All (4)	2 components exciton A.J. Koning and M.C. Duijvestijn (2004) 	Exciton model including numerical transition rates for collision probabilities A.J. Koning and M.C. Duijvestijn (2004)
Level density	All (6)	Fermi gas A.J. Koning et al. (2008) 	Hilaire's combinatorial tables Goriely et al. (2008)

7. Comparison between the experimental results and the TALYS code

 $\rightarrow \alpha$ particles as projectiles

 $\rightarrow \alpha$ particles as projectiles

 $\rightarrow \alpha$ particles as projectiles

Of interest for PET imaging

 \rightarrow protons as projectiles

Produces Th-226 *Candidate for alpha immunotherapy*

 \rightarrow protons as projectiles

Monitor reaction

 \rightarrow deuterons as projectiles

 \rightarrow **deuterons** as projectiles

Used in clinical trials *palliative therapy for painful metastases*

\rightarrow deuterons as projectiles

Of interest for PET imaging

8. Conclusions

- with different type of projectiles (proton, deuteron and alpha particles)
- for materials on a wide mass range
- On radionuclides for diagnosis and therapy purposes in nuclear medicine

- with different type of projectiles (proton, deuteron and alpha particles)
- for materials on a wide mass range
- On radionuclides for diagnosis and therapy purposes in nuclear medicine

. Comparisons have been performed systematically with the TALYS 1.6 code

- with different type of projectiles (proton, deuteron and alpha particles)
- for materials on a wide mass range
- On radionuclides for diagnosis and therapy purposes in nuclear medicine

. Comparisons have been performed systematically with the TALYS 1.6 code

- . Three main mechanisms have been studied:
 - optical potential
 - level density description
 - preequilibrium model

. A set of models have been found to allow a **better description of our collected data**, different from the suggested default models.

- with different type of projectiles (proton, deuteron and alpha particles)
- for materials on a wide mass range
- On radionuclides for diagnosis and therapy purposes in nuclear medicine

. Comparisons have been performed systematically with the TALYS 1.6 code

- . Three main mechanisms have been studied:
 - optical potential
 - level density description
 - preequilibrium model

. A set of models have been found to allow a **better description of our collected data**, different from the suggested default models.

. Further investigations are ongoing on other mechanisms that can affect the computation of the **production cross sections**.

1. Motivation 2. Production process 3. σ determination 4. Exp. Set-up 5. RN of interest 6. TALYS 7. Results & discussion 8. Conclusions

• <u>Charlotte DUCHEMIN^{1,*}</u>, Arnaud GUERTIN¹, Férid HADDAD^{1,2}, Nathalie MICHEL² and Vincent MÉTIVIER¹

^{1.} Laboratoire SUBATECH, Ecole des Mines de Nantes CNRS/IN2P3, Université de Nantes, 4 Rue Alfred Kastler, 44307 Nantes cedex 3, France.

^{2.} GIP ARRONAX, 1 rue Aronnax, 44817 Saint Herblain, France.

* now at CERN, HSE-RP-SP, 1211 Geneva 23, Switzerland

The ARRONAX cyclotron is a project promoted by the Regional Council of Pays de la Loire financed by local authorities, the French government and the European Union. This work has been ,in part, supported by a grant from the French National Agency for Research called "Investissementsd'Avenir", Equipex Arronax-Plus No. ANR-11-EQPX-0004 and Labex No. ANR- 11-LABX-0018-01.

charlotte.duchemin@cern.ch

List of publications related to the topic

Nucl. Med. and Biol. **49** (2017) **30-37** Appl. Rad. And Isot. **118** (2016) **281-89** Appl. Rad. And Isot. **115** (2016) **113-24** NIMB **383** (2016) **191-212** Phys. Med. Biol. **60** (2015) **6847-6864** Appl. Rad. And Isot. **97** (2015) **52–58** Frontiers in Medicine **2** (2015) **31** Phys. Med. Biol. **60** (2015) **931–946** Press article Medical Physics Web Feb 16, 2015 Nucl. Med. and Biol. **41** (2014) **e16–e18** Nuclear Data Sheets **119** (2014) **267–269** International Journal of Modern Physics **27** (2014)