Production and Isolation of 237U and Fission Fragments Resulting from the 238U(γ, n) and 238U(γ, f) Reactions

August 1, 2017
13th International Topical Meeting on Nuclear Applications of Accelerators

Edna S. Cárdenas
Idaho National Laboratory
Edna.Cardenas@inl.gov

Co-Investigators:
Idaho National Laboratory:
Kevin Carney, Mathew Kinlaw, Martha Finck, Erin May, Alexander May, Mathew Snow, Jana Pfeiffer, & Jared Horkley

Johns Hopkins Applied Physics Laboratory:
Alan Hunt

Idaho Accelerator Center:
Jon Stoner

INL/CON-17-41496
Objective

Photonuclear Production

- Predictive modeling
- Irradiation techniques
- Identification techniques
- Isotope purification
 - Chemical processes
 - Mass separation

Demonstrate ^{237}U and fission fragment production from $^{238}\text{U}(\gamma,n)$ and $^{238}\text{U}(\gamma,f)$ reactions.

Radioisotope Uses

- Tracers
- Nuclear forensics
- Medical isotopes
Photonuclear Production

- Idaho Accelerator Center electron linear accelerator \rightarrow tungsten converter \rightarrow bremsstrahlung

- Bremsstrahlung curve simulated with MCNP6

- Cross sections obtained from the Evaluated Nuclear Data File
 - At the lower end of energies the production of 237U is more likely

- Accelerator energy increase:
 - greater flux magnitude
 - higher photon endpoint energy
 - photons more forward directed
Predictive Modeling Using MCNP

• Help determine optimal experiment geometries

• Uranium foil fully positioned with in the beam diameter 10 cm from the converter

• Predict sample activity
 – Transport
 – Radiation safety
 – Production Yield
 • (ENDF/B-VII.1 (γ,n) cross section)
 • 1 hr. irradiation
 • 21.5 MeV
 • 0.1 g
 • ~90 μCi · kW⁻¹ · hr⁻¹ · g⁻¹
 • ~50% within (-1,1)
 • ~70% within (-2,2)
 • ~85% within (-3,3)
$^{238}\text{U Sample Irradiation}$

- Optimal accelerator energy
 - Stable 21.5 MeV
 - Endpoint energy beyond peak of cross section.

- Optimal accelerator current
 - Largest achievable

- Experiment parameters
 - 50 μA
 - 0.1 g natU foil
Identifying ^{237}U

Detection Details
- 4 hrs. post irradiation
- 15 hr. detection

Cross Section Details
- $^{238}\text{U}(\gamma,n)$ Threshold: ~6.2 MeV
- Competes with $^{238}\text{U}(\gamma,f)$

Identification
- Observed 4 photo-peaks (FP interferences)
- Data trends to half-life curve

Production Yield
- $\sim 98 \pm 0.1 \ \mu\text{Ci} \cdot \text{kW}^{-1} \cdot \text{hr}^{-1} \cdot \text{g}^{-1}$ (9% difference)
Chemical Separation at INL

$^{238}\text{U}, ^{237}\text{U}$ & Fission Products

Step 1: Dissolve Irradiated Foil
- Loading Solution: 10 M HNO$_3$
- Immediate Elution

U & Zr

Step 2: Eichrom® UTEVA Resin
- Loading Solution: 5 M HNO$_3$
- Elution with 0.05 M HNO$_3$

Lanthanides

Step 3: Eichrom® RE Resin
- Elution with 0.05 M HNO$_3$

Non-Lanthanide Fission Products
- ^{99m}Tc
- ^{99}Mo
- ^{115}Cd
- ^{115m}In
- ^{133}I

Interesting Isotopes
- ^{95}Zr – medical isotope
- ^{99m}Tc – organ imaging
- ^{99}Mo – decays to ^{99m}Tc
- ^{115}Cd – trace absorption and excretion of cadmium in tissues
- ^{115m}In – used to evaluate certain diseases
- ^{133}I – used to map brain tumors
- ^{237}U – trace uranium in ground water
Foil Dissolution

Dissolution Details
- ~1 hr.
- 10 M nitric acid
UTEVA Column

Half-lives
- 99Mo – 2.8 days
- 99mTc – 6.0 hrs
- 115Cd – 2.2 days

Detection Details
- UTEVA rinse
- 27.5 hrs. post irradiation
- 0.7 hr. detection

Events vs. Energy (keV)
- 153Sm 70/103 keV (I=5/29%)
- 99mTc 141 keV (99Mo \rightarrow 99mTc)
- 99Mo 181 keV (I=6%)
- 115mIn 336 keV (115Cd \rightarrow 115mIn)
- 115Cd 492/528 keV (I=8/27%)
- 99Mo 366 keV (I=1%)
- (cancer treatment/diagnostics)
Elution from UTEVA Resin

Half-lives

- 237U – 6.8 days
- 97Zr – 16.7 hours
- 237U most abundant radioisotope: ~ 6 days
- 87% of fission products with half-life < 1 day
 - 8% > 6 days

Detection Details

- Elution
- 26.3 hrs. post irradiation
- 30 minute detection
Isotopic Purification

Mass separation

• Isotopes separated with mass separator
• The uranium sample is positively ionized thermally and by electron current
• Ion beam propagates through a bending magnet
• Lighter isotopes are deflected more sharply
Isotopic Purification

Catcher Foils
- Ion beams propagate into catcher foils
- 1% collection efficiency
- 5×10 Faraday cup catches charged particles used to determine the number of ions
- Pixel array readout characterizing the beam profile
Conclusions & Future Agenda

• Demonstrated photonuclear production of:
 – ^{237}U, ^{99m}Tc, ^{99}Mo, ^{115}Cd, ^{115m}In, ^{133}I, ^{153}Sm

• Optimize production and increase activities
 – Modify accelerator parameters

• Optimize sample transport
 – Goal under 3.5 hrs. for packaging and transport

• Optimize separation for isotopes of interest
 – Separation goals:
 • Uranium \rightarrow 2.5 hrs.
 • Non-lanthanides in 3 hrs.
 – Strategy to optimize for each isotope of interest
 • Lanthanides $<$ 7.5 hrs.

• Continue mass separator development
 – Optimize uranium separation
 – Introduce new radioisotopes
Thank you.