Production and Isolation of ²³⁷U and Fission Fragments Resulting from the ²³⁸U(γ, n) and ²³⁸U(γ, f) Reactions

> August 1, 2017 13th International Topical Meeting on Nuclear Applications of Accelerators

Edna S. Cárdenas Idaho National Laboratory Edna.Cardenas@inl.gov

INL/CON-17-41496

Co-Investigators:

<u>Idaho National Laboratory:</u> Kevin Carney, Mathew Kinlaw, Martha Finck, Erin May, Alexander May, Mathew Snow, Jana Pfeiffer, & Jared Horkley

<u>Johns Hopkins Applied Physics</u> <u>Laboratory:</u> Alan Hunt

Idaho Accelerator Center: Jon Stoner

Objective

Photonuclear Production

- Predictive modeling
- Irradiation techniques
- Identification techniques
- Isotope purification
 - Chemical processes
 - Mass separation

Demonstrate ${}^{237}U$ and fission fragment production from ${}^{238}U(\gamma,n)$ and ${}^{238}U(\gamma,f)$ reactions.

Radioisotope Uses

- Tracers
- Nuclear forensics
- Medical isotopes

Photonuclear Production

- Idaho Accelerator Center electron linear accelerator → tungsten converter → bremsstrahlung
- Bremsstralung curve simulated with MCNP6
- Cross sections obtained from the Evaluated Nuclear Data File
 - At the lower end of energies the production of ²³⁷U is more likely
- Accelerator energy increase:
 - greater flux magnitude
 - higher photon endpoint energy
 - photons more forward directed

Predictive Modeling Using MCNP

- Help determine optimal experiment geometries
- Uranium foil fully positioned with in the beam diameter 10 cm from the converter
- Predict sample activity
 - Transport
 - Radiation safety
 - Production Yield
 - (ENDF/B-VII.1 (γ,n) cross section)

٠

٠

- 1 hr. irradiation
- 21.5 MeV
- 0.1 g
- ~90 μ Ci · kW⁻¹ · hr⁻¹ · g⁻¹

²³⁸U Sample Irradiation

- Optimal accelerator energy
 - Stable 21.5 MeV
 - Endpoint energy beyond peak of cross section.
- Optimal accelerator current
 - Largest achievable
- Experiment parameters
 - $50 \ \mu A$
 - 0.1 g ^{nat}U foil

Identifying ²³⁷U

Detection Details

- 4 hrs. post irradiation
- 15 hr. detection

Cross Section Details

- ²³⁸U(γ,n) Threshold: ~6.2 MeV
- Competes with ²³⁸U(γ,f)

Identification

- Observed 4 photo-peaks (FP interferences)
- Data trends to half-life curve
 Production Yield
- ~98 ± 0.1 μ Ci · kW⁻¹ · hr⁻¹ · g⁻¹ (9% difference)

Chemical Separation at INL

Interesting Isotopes

- ⁹⁵Zr medical isotope
- ^{99m}Tc organ imaging
- ⁹⁹Mo decays to ^{99m}Tc
- ¹¹⁵Cd trace absorption and excretion of cadmium in tissues
- ^{115m}In used to evaluate certain diseases
- ¹³³I used to map brain tumors
- ²³⁷U trace uranium in ground water

133<mark>|</mark>

15m**lr**

¹¹⁵Cc

Foil Dissolution

Dissolution Details

- ~1 hr.
- 10 M nitric acid

UTEVA Column

Half-lives

- ⁹⁹Mo 2.8 days
- ^{99m}Tc 6.0 hrs
- ¹¹⁵Cd 2.2 days
- ^{115m}In 4.5 hrs
- ¹⁵³Sm 1.9 days

(cancer treatment/diagnostics)

Detection Details

- UTEVA rinse
- 27.5 hrs. post irradiation
- 0.7 hr. detection

Elution from UTEVA Resin

Half-lives

- ²³⁷U 6.8 days
- ⁹⁷Zr 16.7 hours
- ²³⁷U most abundant radioisotope: ~ 6 days
- 87% of fission products with half-life < 1 day
 - 8% > 6 days

Detection Details

- Elution
- 26.3 hrs. post irradiation
- 30 minute detection

Isotopic Purification

Mass separation

- Isotopes separated with mass separator
- The uranium sample is positively ionized thermally and by electron current
- Ion beam propagates through a bending magnet
- Lighter isotopes are deflected more sharply

Isotopic Purification

Catcher Foils

- Ion beams propagate into catcher foils
- 1% collection efficiency
- 5×10 Faraday cup catches charged particles used to determine the number of ions
- Pixel array readout characterizing the beam profile

Conclusions & Future Agenda

- Demonstrated photonuclear production of:
 - ²³⁷U, ^{99m}Tc, ⁹⁹Mo, ¹¹⁵Cd, ^{115m}In, ¹³³I, ¹⁵³Sm
- Optimize production and increase activities
 - Modify accelerator parameters
- Optimize sample transport
 - Goal under 3.5 hrs. for packaging and transport
- Optimize separation for isotopes of interest
 - Separation goals:
 - Uranium \rightarrow 2.5 hrs.
 - Non-lanthanides in 3 hrs.
 - Strategy to optimize for each isotope of interest
 - Lanthanides < 7.5 hrs.
- Continue mass separator development
 - Optimize uranium separation
 - Introduce new radioisotopes

Thank you.